Prince R C, Bashford C L
Biochim Biophys Acta. 1979 Sep 11;547(3):447-54. doi: 10.1016/0005-2728(79)90025-2.
The equilibrium oxidation-reduction mipoint potential (Em) of isolated Rhodopseudomonas sphaeroides cytochrome c2 exhibits a pH-dependent behavior which can be ascribed to a pK on the oxidized form at pH 8.0 (Pettigrew et al. (1975) Biochim. Biophys. Acta 430, 197-208). However, as with mammalian cytochrome c (Brandt, K.G. Parks, P.C., Czerlinski, G.H. and Hess, G.P. (1966) J. Biol. Chem. 241, 4180-4185) this pK can more properly be attributed to the combination of a pK beyond pH 11, and a slow conformational change of the ferricytochrome. This has been demonstrated by resolving the Em of cytochrome c2 before and after the conformational change. The Em of the unaltered form is essentially pH independent between pH 7 and 11.5, and the lower equilibrium Em is due solely to the conformational change. In vivo the conformational change is prevented by the binding of the cytochrome c2 to the photochemical reaction center, and the cytochrome exhibits an essentially pH-independent Em from pH 5 to 11. The alkaline transition thus has little physiological significance, and it is unlikely that the redox reactions of cytochrome c2 in vivo involve protons.
分离出的球形红假单胞菌细胞色素c2的氧化还原中点平衡电位(Em)表现出pH依赖性行为,这可归因于氧化形式在pH 8.0时的一个pK值(Pettigrew等人,(1975年)《生物化学与生物物理学报》430, 197 - 208)。然而,与哺乳动物细胞色素c一样(Brandt, K.G., Parks, P.C., Czerlinski, G.H.和Hess, G.P.(1966年)《生物化学杂志》241, 4180 - 4185),这个pK值更确切地应归因于pH超过11时的一个pK值以及高铁细胞色素的缓慢构象变化。这已通过解析构象变化前后细胞色素c2的Em得到证实。未改变形式的Em在pH 7至11.5之间基本与pH无关,较低的平衡Em完全是由于构象变化所致。在体内,细胞色素c2与光化学反应中心的结合阻止了构象变化,并且细胞色素在pH 5至11范围内表现出基本与pH无关的Em。因此,碱性转变几乎没有生理意义,并且细胞色素c2在体内的氧化还原反应不太可能涉及质子。