Lahcen Abdellatif Ait, Labib Michael, Caprio Alexandre, Annabestani Mohsen, Sanchez-Botero Lina, Hsue Weihow, Liu Christopher F, Dunham Simon, Mosadegh Bobak
Dalio Institute of Cardiovascular Imaging, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA.
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
Micromachines (Basel). 2024 Nov 18;15(11):1393. doi: 10.3390/mi15111393.
Cardiac mapping is a crucial procedure for diagnosing and treating cardiac arrhythmias. Still, current clinical techniques face limitations including insufficient electrode coverage, poor conformability to complex heart chamber geometries, and high costs. This study explores the design, testing, and validation of a 64-electrode soft robotic catheter that addresses these challenges in cardiac mapping. A dual-layer flexible printed circuit board (PCB) was designed and integrated with sensors into a soft robotic sensor array (SRSA) assembly. Design considerations included flex PCB layout, routing, integration, conformity to heart chambers, sensor placement, and catheter durability. Rigorous SRSA in vitro testing evaluated the burst/leakage pressure, block force for electrode contact, mechanical integrity, and environmental resilience. For in vivo validation, a porcine model was used to demonstrate the successful deployment, conformability, and acquisition of electrograms in both the ventricles and atria. This catheter-deployable SRSA represents a meaningful step towards translating the integration of soft robotic actuators and stretchable electronics for clinical use, showcasing the unique mechanical and electrical performance that these designs enable. The high-density electrode array enabled rapid 2 s data acquisition with detailed spatial and temporal resolution, as illustrated by the clear and consistent cardiac signals recorded across all electrodes. The future of this work will lie in enabling high-density, anatomically conformable devices for detailed cardiac mapping to guide ablation therapy and other interventions.
心脏标测是诊断和治疗心律失常的关键程序。然而,当前的临床技术面临着诸多限制,包括电极覆盖不足、对复杂心腔几何形状的贴合性差以及成本高昂。本研究探索了一种64电极软机器人导管的设计、测试和验证,该导管旨在解决心脏标测中的这些挑战。设计了一种双层柔性印刷电路板(PCB),并将其与传感器集成到一个软机器人传感器阵列(SRSA)组件中。设计考虑因素包括柔性PCB布局、布线、集成、对心腔的贴合性、传感器放置以及导管耐用性。对SRSA进行了严格的体外测试,评估了爆破/泄漏压力、电极接触的阻塞力、机械完整性和环境适应性。为了进行体内验证,使用猪模型展示了该导管在心室和心房中的成功部署、贴合性以及心电图的采集。这种可通过导管部署的SRSA代表了将软机器人致动器和可拉伸电子器件集成用于临床应用的有意义的一步,展示了这些设计所具备的独特机械和电气性能。高密度电极阵列能够在2秒内快速采集数据,并具有详细的空间和时间分辨率,所有电极记录的清晰一致的心脏信号证明了这一点。这项工作的未来在于开发高密度、符合解剖结构的设备,用于详细的心脏标测,以指导消融治疗和其他干预措施。