Zarzyka Iwona, Krzykowska Beata, Hęclik Karol, Frącz Wiesław, Janowski Grzegorz, Bąk Łukasz, Klepka Tomasz, Bieniaś Jarosław, Ostapiuk Monika, Tor-Świątek Aneta, Droździel-Jurkiewicz Magda, Tomczyk Adam, Falkowska Anna, Kuciej Michał
Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Powstancow Warszawy 6, 35959 Rzeszow, Poland.
Department of Biotechnology and Bioinformatic, Rzeszów University of Technology, Powstancow Warszawy 6, 35959 Rzeszow, Poland.
Materials (Basel). 2024 Nov 13;17(22):5542. doi: 10.3390/ma17225542.
The growing demand for products made of polymeric materials, including the commonly used polypropylene (PP), is accompanied by the problem of storing and disposing of non-biodegradable waste, increasing greenhouse gas emissions, climate change and the creation of toxic products that constitute a health hazard of all living organisms. Moreover, most of the synthetic polymers used are made from petrochemical feedstocks from non-renewable resources. The use of petrochemical raw materials also causes degradation of the natural environment. A potential solution to these problems is the use of biopolymers. Biopolymers include biodegradable or biosynthesizable polymers, i.e., obtained from renewable sources or produced synthetically but from raw materials of natural origin. One of them is the poly(3-hydroxybutyrate) (P3HB) biopolymer, whose properties are comparable to PP. Unfortunately, it is necessary to modify its properties to improve its processing and operational properties. In the work, hybrid polymer nanobiocomposites based on P3HB, with the addition of chain, uncross-linked polyurethane (PU) and layered aluminosilicate modified with organic salts (Cloisite30B) were produced by extrusion process. The introduction of PU and Cloisite30B to the polymer matrix (P3HB) influenced the processing parameters beneficially and resulted in a decrease in the extrusion temperature of more than 10 °C. The influence of the simultaneous addition of a constant amount of PU (10 m/m%) and the different amounts of nanoadditives (1, 2 and 3 m/m%) on the compatibility, morphology and static mechanical properties of the resulted nanobiocomposites were examined. The component interactions by Fourier transformation infrared spectroscopy (FTIR) analysis, nano- and microscale structure studies using small-angle X-ray scattering (SAXS) and morphology by scanning electron microscopy (SEM) were carried out, and the hardness and tensile strength of the obtained polymer nanobiocomposites were determined. FTIR analysis identified the compatibility of the polyester matrix, PU, and organomodified montmorillonite, the greatest being 3 m/m% Cloisite30B content. The addition of PU to the polyester elasticizes the material and decreases the material's strength and ductility. The presence of nanoclay enhanced the mechanical properties of nanobiocomposites. The resulting nanobiocomposites can be used in the production of short-life materials applied in gardening or agriculture.
对包括常用聚丙烯(PP)在内的聚合物材料制成的产品需求不断增长,随之而来的是不可生物降解废物的储存和处置问题,这导致温室气体排放增加、气候变化以及产生对所有生物构成健康危害的有毒产品。此外,大多数使用的合成聚合物由不可再生资源的石化原料制成。石化原料的使用也会导致自然环境退化。解决这些问题的一个潜在办法是使用生物聚合物。生物聚合物包括可生物降解或可生物合成的聚合物,即从可再生资源获得或由天然来源的原料合成生产的聚合物。其中之一是聚(3-羟基丁酸酯)(P3HB)生物聚合物,其性能与PP相当。不幸的是,有必要对其性能进行改性以改善其加工和使用性能。在这项工作中,通过挤出工艺制备了基于P3HB的杂化聚合物纳米生物复合材料,并添加了链状、未交联的聚氨酯(PU)和用有机盐改性的层状硅铝酸盐(Cloisite30B)。将PU和Cloisite30B引入聚合物基体(P3HB)对加工参数产生了有益影响,使挤出温度降低了10℃以上。研究了同时添加恒定含量的PU(10 m/m%)和不同含量的纳米添加剂(1、2和3 m/m%)对所得纳米生物复合材料的相容性、形态和静态力学性能的影响。通过傅里叶变换红外光谱(FTIR)分析进行组分相互作用研究,使用小角X射线散射(SAXS)进行纳米和微观结构研究,并通过扫描电子显微镜(SEM)观察形态,同时测定了所得聚合物纳米生物复合材料的硬度和拉伸强度。FTIR分析确定了聚酯基体、PU和有机改性蒙脱土的相容性,其中Cloisite30B含量为3 m/m%时相容性最佳。向聚酯中添加PU使材料具有弹性,但会降低材料的强度和延展性。纳米粘土的存在增强了纳米生物复合材料的力学性能。所得纳米生物复合材料可用于生产园艺或农业中使用的短寿命材料。