文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

姜黄素衍生物在药物化学中的应用:在癌症治疗中的潜在应用。

Curcumin Derivatives in Medicinal Chemistry: Potential Applications in Cancer Treatment.

机构信息

Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.

Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland.

出版信息

Molecules. 2024 Nov 12;29(22):5321. doi: 10.3390/molecules29225321.


DOI:10.3390/molecules29225321
PMID:39598712
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11596437/
Abstract

Curcumin, a naturally occurring compound found in the rhizome of plants, particularly in turmeric ( L.), exhibits a broad range of biological activities, including anti-inflammatory, antioxidant, and anticancer properties. Curcumin has demonstrated effectiveness in inhibiting tumor growth, arousing interest for its potential in treating various cancers, such as breast, lung, prostate, and brain cancers. However, the clinical application of curcumin is limited due to its low chemical stability, poor water solubility, and low bioavailability. In response to these challenges, structural modifications of curcumin have been explored to improve its pharmacological properties, including enhanced anticancer selectivity index and bioavailability. This review highlights promising chemical modifications of curcumin that could lead to the development of more effective anticancer therapies. By functionalizing the parent curcumin molecule, researchers aim to create more stable and bioavailable compounds with enhanced therapeutic potential, making curcumin derivatives promising candidates for medical applications.

摘要

姜黄素是一种天然存在于植物根茎中的化合物,特别是在姜黄( L.)中,具有广泛的生物活性,包括抗炎、抗氧化和抗癌特性。姜黄素已被证明能有效抑制肿瘤生长,因其在治疗各种癌症方面的潜力而引起关注,如乳腺癌、肺癌、前列腺癌和脑癌。然而,由于其化学稳定性低、水溶性差和生物利用度低,姜黄素的临床应用受到限制。针对这些挑战,人们探索了对姜黄素的结构修饰,以改善其药理特性,包括提高抗癌选择性指数和生物利用度。本综述重点介绍了有前途的姜黄素化学修饰,这些修饰可能会开发出更有效的抗癌疗法。通过对母体姜黄素分子进行功能化,研究人员旨在创造更稳定和更具生物利用度的化合物,以提高治疗潜力,使姜黄素衍生物成为有前途的医学应用候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/700a417e61e3/molecules-29-05321-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/bc12eb52e10a/molecules-29-05321-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/a8557d4f9aa9/molecules-29-05321-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/e50204506e46/molecules-29-05321-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/f4a45fd06a23/molecules-29-05321-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/8f2fae105a2f/molecules-29-05321-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/e053906dee37/molecules-29-05321-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/b0cc314507d7/molecules-29-05321-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/47ce2fd60322/molecules-29-05321-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/b57648024773/molecules-29-05321-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/209dbae0062f/molecules-29-05321-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/4ca087337f6a/molecules-29-05321-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/51f02a5264c9/molecules-29-05321-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/0188a70c8e53/molecules-29-05321-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/da51e17afc79/molecules-29-05321-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/52946a85a3e6/molecules-29-05321-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/0846be8ea423/molecules-29-05321-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/606b9ef0a4ea/molecules-29-05321-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/df056745bf8a/molecules-29-05321-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/ddbd088a1f1c/molecules-29-05321-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/700a417e61e3/molecules-29-05321-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/bc12eb52e10a/molecules-29-05321-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/a8557d4f9aa9/molecules-29-05321-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/e50204506e46/molecules-29-05321-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/f4a45fd06a23/molecules-29-05321-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/8f2fae105a2f/molecules-29-05321-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/e053906dee37/molecules-29-05321-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/b0cc314507d7/molecules-29-05321-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/47ce2fd60322/molecules-29-05321-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/b57648024773/molecules-29-05321-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/209dbae0062f/molecules-29-05321-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/4ca087337f6a/molecules-29-05321-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/51f02a5264c9/molecules-29-05321-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/0188a70c8e53/molecules-29-05321-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/da51e17afc79/molecules-29-05321-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/52946a85a3e6/molecules-29-05321-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/0846be8ea423/molecules-29-05321-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/606b9ef0a4ea/molecules-29-05321-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/df056745bf8a/molecules-29-05321-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/ddbd088a1f1c/molecules-29-05321-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdf/11596437/700a417e61e3/molecules-29-05321-g020.jpg

相似文献

[1]
Curcumin Derivatives in Medicinal Chemistry: Potential Applications in Cancer Treatment.

Molecules. 2024-11-12

[2]
Curcumin and its formulations: potential anti-cancer agents.

Anticancer Agents Med Chem. 2012-3

[3]
Curcumin and Its Derivatives as Potential Therapeutic Agents in Prostate, Colon and Breast Cancers.

Molecules. 2019-11-30

[4]
Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma.

Eur J Med Chem. 2015-12-15

[5]
Curcumin nanomedicine: a road to cancer therapeutics.

Curr Pharm Des. 2013

[6]
Curcumin in Cancer Prevention: Insights from Clinical Trials and Strategies to Enhance Bioavailability.

Curr Pharm Des. 2024

[7]
Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment.

Biomaterials. 2014-1-15

[8]
Superior anticancer activity is demonstrated by total extract of Curcuma longa L. as opposed to individual curcuminoids separated by centrifugal partition chromatography.

Phytother Res. 2018-1-24

[9]
The clinical applications of curcumin: current state and the future.

Curr Pharm Des. 2013

[10]
Curcumin: the Indian solid gold.

Adv Exp Med Biol. 2007

引用本文的文献

[1]
Insights into the Structural Patterns in Human Glioblastoma Cell Line SF268 Activity and ADMET Prediction of Curcumin Derivatives.

Pharmaceutics. 2025-7-25

[2]
The Supportive Role of Plant-Based Substances in AMD Treatment and Their Potential.

Int J Mol Sci. 2025-8-16

[3]
Curcumin Derivative CU4c Exhibits HDAC-Inhibitory and Anticancer Activities Against Human Lung Cancer Cells In Vitro and in Mouse Xenograft Models.

Pharmaceuticals (Basel). 2025-6-26

[4]
Modulation of Endoplasmic Reticulum Stress in Experimental Anti-Cancer Therapy.

Int J Mol Sci. 2025-7-3

[5]
Oxidative stress and antioxidant therapeutics in autism spectrum disorder: a biochemical and structure-activity relationship perspective.

Mol Divers. 2025-6-30

[6]
Curcumin and acute myeloid leukemia: a golden hope, updated insights.

Mol Biol Rep. 2025-6-11

[7]
IL6/CCL2 from M2-polarized microglia promotes breast cancer brain metastasis and the reversal effect of β-elemene.

Front Pharmacol. 2025-5-15

[8]
An acid-responsive bone-targeting nanoplatform loaded with curcumin balances osteogenic and osteoclastic functions.

Regen Biomater. 2025-5-5

[9]
Herbal based nanoparticles as a possible and potential treatment of cancer: a review.

Explor Target Antitumor Ther. 2025-1-3

[10]
The Prospects of Curcumin in Non-Small Cell Lung Cancer Therapeutics.

Cancers (Basel). 2025-1-27

本文引用的文献

[1]
Recent Advances in the Synthesis of Diarylheptanoids.

Chem Asian J. 2024-8-1

[2]
Wondrous Yellow Molecule: Are Hydrogels a Successful Strategy to Overcome the Limitations of Curcumin?

Molecules. 2024-4-12

[3]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[4]
Curcumin in treatment of hematological cancers: Promises and challenges.

J Tradit Complement Med. 2024-1-5

[5]
Curcumin Inhibits Vasculogenic Mimicry Regulating ETS-1 in Renal Cell Carcinoma.

Curr Cancer Drug Targets. 2024

[6]
Antitumor Effects of Curcumin on Cervical Cancer with the Focus on Molecular Mechanisms: An Exegesis.

Curr Pharm Des. 2023

[7]
Basic research on curcumin in cervical cancer: Progress and perspectives.

Biomed Pharmacother. 2023-6

[8]
Enhanced Cytotoxic Activity of PEGylated Curcumin Derivatives: Synthesis, Structure-Activity Evaluation, and Biological Activity.

Int J Mol Sci. 2023-1-11

[9]
The Curcuminoid EF24 in Combination with TRAIL Reduces Human Renal Cancer Cell Migration by Decreasing MMP-2/MMP-9 Activity through a Reduction in HO.

Int J Mol Sci. 2023-1-5

[10]
Natural Compounds in Liposomal Nanoformulations of Potential Clinical Application in Glioblastoma.

Cancers (Basel). 2022-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索