Suppr超能文献

基于自适应变分模态分解-平稳小波变换和集成精炼复合多尺度波动散度熵的齿轮箱故障诊断

Gearbox Fault Diagnosis Based on Adaptive Variational Mode Decomposition-Stationary Wavelet Transform and Ensemble Refined Composite Multiscale Fluctuation Dispersion Entropy.

作者信息

Wang Xiang, Du Yang, Ji Xiaoting

机构信息

School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China.

Jiangsu Provincial Key Laboratory of Multi-Energy Integration and Flexible Power Generation Technology, Nanjing 211167, China.

出版信息

Sensors (Basel). 2024 Nov 6;24(22):7129. doi: 10.3390/s24227129.

Abstract

Existing gearbox fault diagnosis methods are prone to noise interference and cannot extract comprehensive fault signals, leading to misdiagnosis or missed diagnosis. This paper proposes a method for gearbox fault diagnosis based on adaptive variational mode decomposition-stationary wavelet transform (AVMD-SWT) and ensemble refined composite multiscale fluctuation dispersion entropy (ERCMFDE). Initially, the kurtosis coefficient and autocorrelation coefficient are presented, and the Intrinsic Mode Functions are denoised through the application of AVMD-SWT. Secondly, the coarse-grained processing method of composite multiscale fluctuation dispersion entropy is extended to encompass three additional approaches: first-order central moment, second-order central moment, and third-order central moment. This enables the comprehensive extraction of feature information from the time series, thereby facilitating the formation of an initial hybrid feature set. Subsequently, recursive feature elimination (RFE) is employed for feature selection. Ultimately, the outcomes of the faults diagnoses are derived through the utilization of a Support Vector Machine with a Sparrow Search Algorithm (SSA-SVM), with the actual faults data collection and analysis conducted on an experimental platform for gearbox fault diagnosis. The experiments demonstrate that the method can accurately identify gearbox faults and achieve a high diagnostic accuracy of 98.78%.

摘要

现有的齿轮箱故障诊断方法容易受到噪声干扰,无法提取全面的故障信号,导致误诊或漏诊。本文提出了一种基于自适应变分模态分解-平稳小波变换(AVMD-SWT)和集成细化复合多尺度波动分散熵(ERCMFDE)的齿轮箱故障诊断方法。首先,给出了峭度系数和自相关系数,并通过应用AVMD-SWT对本征模态函数进行去噪。其次,将复合多尺度波动分散熵的粗粒化处理方法扩展到一阶中心矩、二阶中心矩和三阶中心矩这三种额外方法。这使得能够从时间序列中全面提取特征信息,从而便于形成初始混合特征集。随后,采用递归特征消除(RFE)进行特征选择。最终,通过使用带有麻雀搜索算法的支持向量机(SSA-SVM)得出故障诊断结果,并在齿轮箱故障诊断实验平台上进行实际故障数据采集和分析。实验表明,该方法能够准确识别齿轮箱故障,诊断准确率高达98.78%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8514/11598635/508e40ed1b30/sensors-24-07129-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验