Suppr超能文献

机器学习在无参考运动伪影光电容积脉搏波信号检测中的应用:综述。

Machine Learning Applied to Reference Signal-Less Detection of Motion Artifacts in Photoplethysmographic Signals: A Review.

机构信息

Programa de Bioingeniería, Facultad de Ingeniería, Universidad Santiago de Cali, Calle 5 # 62-00 Barrio Pampalinda, Santiago de Cali 760032, Colombia.

Programa de Mecatrónica, Facultad de Ingeniería, Universidad Autónoma de Occidente, Calle 25 # 115-85 Vía Cali-Jamundí, Santiago de Cali 760030, Colombia.

出版信息

Sensors (Basel). 2024 Nov 9;24(22):7193. doi: 10.3390/s24227193.

Abstract

Machine learning algorithms have brought remarkable advancements in detecting motion artifacts (MAs) from the photoplethysmogram (PPG) with no measured or synthetic reference data. However, no study has provided a synthesis of these methods, let alone an in-depth discussion to aid in deciding which one is more suitable for a specific purpose. This narrative review examines the application of machine learning techniques for the reference signal-less detection of MAs in PPG signals. We did not consider articles introducing signal filtering or decomposition algorithms without previous identification of corrupted segments. Studies on MA-detecting approaches utilizing multiple channels and additional sensors such as accelerometers were also excluded. Despite its promising results, the literature on this topic shows several limitations and inconsistencies, particularly those regarding the model development and testing process and the measures used by authors to support the method's suitability for real-time applications. Moreover, there is a need for broader exploration and validation across different body parts and a standardized set of experiments specifically designed to test and validate MA detection approaches. It is essential to provide enough elements to enable researchers and developers to objectively assess the reliability and applicability of these methods and, therefore, obtain the most out of them.

摘要

机器学习算法在检测无测量或合成参考数据的光电容积脉搏波(PPG)运动伪影(MA)方面取得了显著进展。然而,尚无研究对这些方法进行综合,更不用说深入讨论以帮助确定哪种方法更适合特定目的。本叙述性综述考察了机器学习技术在 PPG 信号中无参考信号检测 MA 的应用。我们不考虑在没有先前识别损坏段的情况下介绍信号滤波或分解算法的文章。也排除了利用多个通道和加速度计等附加传感器的 MA 检测方法的研究。尽管该主题的文献显示出一些局限性和不一致性,特别是在模型开发和测试过程以及作者用于支持该方法适用于实时应用的措施方面,但该技术具有很大的发展潜力。此外,需要在不同身体部位和专门设计用于测试和验证 MA 检测方法的标准化实验套件中进行更广泛的探索和验证。提供足够的元素以使研究人员和开发人员能够客观地评估这些方法的可靠性和适用性,并从中获得最大收益是至关重要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41a8/11598458/fb88c7ed93f5/sensors-24-07193-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验