School of Integrated Circuits, Shandong University, Jinan 250101, China.
Sensors (Basel). 2024 Nov 11;24(22):7207. doi: 10.3390/s24227207.
Binarized convolutional neural networks (bCNNs) are favored for the design of low-storage, low-power cardiac arrhythmia classifiers owing to their high weight compression rate. However, multi-class classification of ECG signals based on bCNNs is challenging due to the accuracy loss introduced by the binarization operation. In this paper, an effective multi-classifier system is proposed for electrocardiogram (ECG) signals using a binarized depthwise separable convolutional neural network (bDSCNN) with the merged convolution-pooling (MCP) method. The binarized depthwise separable convolution layer is adopted to reduce the increased number of parameters in multi-classification systems. Instead of operating convolution and pooling sequentially as in a traditional convolutional neural network (CNN), the MCP method merges pooling together with convolution layers to reduce the number of computations. To further reduce hardware resources, this work employs blockwise incremental calculation to eliminate redundant storage with computations. In addition, the R peak interval data are integrated with P-QRS-T features to improve the classification accuracy. The proposed bDSCNN model is evaluated on an Intel DE1-SoC field-programmable gate array (FPGA), and the experimental results demonstrate that the proposed system achieves a five-class classification accuracy of 96.61% and a macro-F1 score of 89.08%, along with a dynamic power dissipation of 20 μW for five-category ECG signal classification. The hardware resource usage of BRAM and LUTs plus REGs is reduced by at least 2.94 and 1.74 times, respectively, compared with existing ECG classifiers using bCNN methods.
二进制卷积神经网络(bCNN)因其高权重压缩率而受到青睐,可用于设计低存储、低功耗的心脏心律失常分类器。然而,由于 binarization 操作引入的精度损失,基于 bCNN 的 ECG 信号多类分类具有挑战性。在本文中,提出了一种有效的多分类器系统,用于使用具有合并卷积-池化(MCP)方法的二进制深度可分离卷积神经网络(bDSCNN)对心电图(ECG)信号进行分类。采用二进制深度可分离卷积层来减少多分类系统中参数增加的数量。MCP 方法将池化与卷积层合并在一起,以减少计算量,而不是像传统卷积神经网络(CNN)那样按顺序进行卷积和池化操作。为了进一步减少硬件资源,本工作采用分块增量计算来消除计算中的冗余存储。此外,将 R 峰间隔数据与 P-QRS-T 特征相结合,以提高分类精度。所提出的 bDSCNN 模型在 Intel DE1-SoC 现场可编程门阵列(FPGA)上进行评估,实验结果表明,所提出的系统在五类 ECG 信号分类中实现了 96.61%的五分类准确率和 89.08%的宏 F1 得分,同时动态功耗为 20μW。与使用 bCNN 方法的现有 ECG 分类器相比,BRAM 和 LUTs+REGs 的硬件资源使用率分别至少降低了 2.94 倍和 1.74 倍。