Suppr超能文献

用于自动驾驶和辅助驾驶中基于雷达的目标识别的聚类算法评估

Evaluation of Cluster Algorithms for Radar-Based Object Recognition in Autonomous and Assisted Driving.

作者信息

de Ramos Daniel Carvalho, Ferreira Lucas Reksua, Santos Max Mauro Dias, Teixeira Evandro Leonardo Silva, Yoshioka Leopoldo Rideki, Justo João Francisco, Malik Asad Waqar

机构信息

Department of Electronic, Federal Technological University of Paraná, Ponta Grossa 84017-220, PR, Brazil.

Faculty of Science and Technology in Engineering, University of Brasilia, Gama 72444-240, DF, Brazil.

出版信息

Sensors (Basel). 2024 Nov 12;24(22):7219. doi: 10.3390/s24227219.

Abstract

Perception systems for assisted driving and autonomy enable the identification and classification of objects through a concentration of sensors installed in vehicles, including Radio Detection and Ranging (RADAR), camera, Light Detection and Ranging (LIDAR), ultrasound, and HD maps. These sensors ensure a reliable and robust navigation system. Radar, in particular, operates with electromagnetic waves and remains effective under a variety of weather conditions. It uses point cloud technology to map the objects in front of you, making it easy to group these points to associate them with real-world objects. Numerous clustering algorithms have been developed and can be integrated into radar systems to identify, investigate, and track objects. In this study, we evaluate several clustering algorithms to determine their suitability for application in automotive radar systems. Our analysis covered a variety of current methods, the mathematical process of these methods, and presented a comparison table between these algorithms, including Hierarchical Clustering, Affinity Propagation Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Mini-Batch K-Means, K-Means Mean Shift, OPTICS, Spectral Clustering, and Gaussian Mixture. We have found that K-Means, Mean Shift, and DBSCAN are particularly suitable for these applications, based on performance indicators that assess suitability and efficiency. However, DBSCAN shows better performance compared to others. Furthermore, our findings highlight that the choice of radar significantly impacts the effectiveness of these object recognition methods.

摘要

用于辅助驾驶和自动驾驶的感知系统通过安装在车辆中的多种传感器来实现物体的识别和分类,这些传感器包括无线电探测与测距(RADAR)、摄像头、激光探测与测距(LIDAR)、超声波传感器以及高清地图。这些传感器确保了可靠且强大的导航系统。特别是雷达,它利用电磁波工作,在各种天气条件下都能保持有效。它使用点云技术来绘制前方物体的地图,便于将这些点进行分组以与现实世界中的物体关联起来。已经开发出了许多聚类算法,并且可以集成到雷达系统中以识别、研究和跟踪物体。在本研究中,我们评估了几种聚类算法,以确定它们在汽车雷达系统中的适用性。我们的分析涵盖了多种当前方法、这些方法的数学过程,并给出了这些算法之间的比较表,包括层次聚类、亲和传播、平衡迭代规约和层次聚类法(BIRCH)、基于密度的带有噪声的空间聚类应用(DBSCAN)、Mini-Batch K-Means、K-Means、均值漂移、OPTICS、谱聚类和高斯混合模型。基于评估适用性和效率的性能指标,我们发现K-Means、均值漂移和DBSCAN特别适合这些应用。然而,与其他算法相比,DBSCAN表现出更好的数据性能。此外,我们的研究结果突出表明,雷达的选择对这些物体识别方法的有效性有显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f39/11598549/08a54336cc7a/sensors-24-07219-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验