Suppr超能文献

结合实时神经成像与机器学习研究婴儿期对熟悉面孔的注意力:一项原理验证研究。

Combining Real-Time Neuroimaging With Machine Learning to Study Attention to Familiar Faces During Infancy: A Proof of Principle Study.

作者信息

Throm Elena, Gui Anna, Haartsen Rianne, da Costa Pedro F, Leech Robert, Mason Luke, Jones Emily J H

机构信息

Department of Psychological Science, Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK.

Department of Psychology, University of Essex, Colchester, UK.

出版信息

Dev Sci. 2025 Jan;28(1):e13592. doi: 10.1111/desc.13592.

Abstract

Looking at caregivers' faces is important for early social development, and there is a concomitant increase in neural correlates of attention to familiar versus novel faces in the first 6 months. However, by 12 months of age brain responses may not differentiate between familiar and unfamiliar faces. Traditional group-based analyses do not examine whether these 'null' findings stem from a true lack of preference within individual infants, or whether groups of infants show individually strong but heterogeneous preferences for familiar versus unfamiliar faces. In a preregistered proof-of-principle study, we applied Neuroadaptive Bayesian Optimisation (NBO) to test how individual infants' neural responses vary across faces differing in familiarity. Sixty-one 5-12-month-olds viewed faces resulting from gradually morphing a familiar (primary caregiver) into an unfamiliar face. Electroencephalography (EEG) data from fronto-central channels were analysed in real-time. After the presentation of each face, the Negative central (Nc) event-related potential (ERP) amplitude was calculated. A Bayesian Optimisation algorithm iteratively selected the next stimulus until it identified the stimulus eliciting the strongest Nc for that infant. Attrition (15%) was lower than in traditional studies (22%). Although there was no group-level Nc-difference between familiar versus unfamiliar faces, an optimum was predicted in 85% of the children, indicating individual-level attentional preferences. Traditional analyses based on infants' predicted optimum confirmed NBO can identify subgroups based on brain activation. Optima were not related to age and social behaviour. NBO suggests the lack of overall familiar/unfamiliar-face attentional preference in middle infancy is explained by heterogeneous preferences, rather than a lack of preference within individual infants.

摘要

观察照顾者的面孔对早期社交发展很重要,并且在出生后的前6个月,对熟悉面孔与陌生面孔的注意力的神经关联会相应增加。然而,到12个月大时,大脑反应可能无法区分熟悉面孔和陌生面孔。传统的基于群体的分析并未考察这些“无差异”结果是源于个别婴儿真正缺乏偏好,还是婴儿群体对熟悉面孔与陌生面孔表现出个体强烈但异质的偏好。在一项预先注册的原理验证研究中,我们应用神经自适应贝叶斯优化(NBO)来测试个别婴儿的神经反应如何因面孔熟悉度不同而变化。61名5至12个月大的婴儿观看了由熟悉面孔(主要照顾者)逐渐变形为陌生面孔的图像。对额中央通道的脑电图(EEG)数据进行实时分析。在每张面孔呈现后,计算负中央(Nc)事件相关电位(ERP)振幅。贝叶斯优化算法迭代选择下一个刺激,直到确定能引起该婴儿最强Nc反应的刺激。损耗率(15%)低于传统研究(22%)。虽然在熟悉面孔与陌生面孔之间没有群体水平的Nc差异,但在85%的儿童中预测到了一个最佳点,表明存在个体水平的注意力偏好。基于婴儿预测最佳点的传统分析证实,NBO可以根据大脑激活情况识别亚组。最佳点与年龄和社会行为无关。NBO表明,婴儿中期总体上对熟悉/陌生面孔缺乏注意力偏好是由异质偏好造成的,而不是个别婴儿缺乏偏好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f711/11599787/74fb8bb94d50/DESC-28-e13592-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验