Wiese Holger, Schweinberger Stefan R, Kovács Gyula
Durham University, United Kingdom.
Friedrich Schiller University Jena, Germany.
Neurosci Biobehav Rev. 2024 Dec;167:105943. doi: 10.1016/j.neubiorev.2024.105943. Epub 2024 Nov 16.
Humans are highly efficient at recognising familiar faces. However, previous EEG/ERP research has given a partial and fragmented account of the neural basis of this remarkable ability. We argue that this is related to insufficient consideration of fundamental characteristics of familiar face recognition. These include image-independence (recognition across different pictures), levels of familiarity (familiar faces vary hugely in duration and intensity of our exposure to them), automaticity (we cannot voluntarily withhold from recognising a familiar face), and domain-selectivity (the degree to which face familiarity effects are selective). We review recent EEG/ERP work, combining uni- and multivariate methods, that has systematically targeted these shortcomings. We present a theoretical account of familiar face recognition, dividing it into early visual, domain-sensitive and domain-general phases, and integrating image-independence and levels of familiarity. Our account incorporates classic and more recent concepts, such as multi-dimensional face representation and course-to-fine processing. While several questions remain to be addressed, this new account represents a major step forward in our understanding of the neurophysiological basis of familiar face recognition.
人类在识别熟悉面孔方面效率极高。然而,以往的脑电图/事件相关电位(EEG/ERP)研究对这种非凡能力的神经基础给出的解释是片面且零散的。我们认为,这与对熟悉面孔识别基本特征的考虑不足有关。这些特征包括图像独立性(跨不同图片的识别)、熟悉程度(我们对熟悉面孔的接触时长和强度差异极大)、自动性(我们无法自主抑制对熟悉面孔的识别)以及领域选择性(面孔熟悉效应的选择程度)。我们回顾了近期结合单变量和多变量方法的EEG/ERP研究,这些研究系统地针对了这些不足。我们提出了一个关于熟悉面孔识别的理论解释,将其分为早期视觉、领域敏感和领域通用阶段,并整合了图像独立性和熟悉程度。我们的解释纳入了经典和最新的概念,如多维面孔表征和从粗到细的加工。虽然仍有几个问题有待解决,但这个新的解释代表了我们在理解熟悉面孔识别神经生理基础方面向前迈出的重要一步。