Department of Biology, Boston University, Boston, Massachusetts, USA.
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Glob Chang Biol. 2024 Nov;30(11):e17578. doi: 10.1111/gcb.17578.
As ocean warming threatens reefs worldwide, identifying corals with adaptations to higher temperatures is critical for conservation. Genetically distinct but morphologically similar (i.e. cryptic) coral populations can be specialized to extreme habitats and thrive under stressful conditions. These corals often associate with locally beneficial microbiota (Symbiodiniaceae photobionts and bacteria), obscuring the main drivers of thermal tolerance. Here, we leverage a holobiont (massive Porites) with high fidelity for C15 photobionts to investigate adaptive variation across classic ("typical" conditions) and extreme reefs characterized by higher temperatures and light attenuation. We uncovered three cryptic lineages that exhibit limited micro-morphological variation; one lineage dominated classic reefs (L1), one had more even distributions (L2), and a third was restricted to extreme reefs (L3). L1 and L2 were more closely related to populations ~4300 km away, suggesting that some lineages are widespread. All corals harbored Cladocopium C15 photobionts; L1 and L2 shared a photobiont pool that differed in composition between reef types, yet L3 mostly harbored unique photobiont strains not found in the other lineages. Assemblages of bacterial partners differed among reef types in lineage-specific ways, suggesting that lineages employ distinct microbiome regulation strategies. Analysis of light-harvesting capacity and thermal tolerance revealed adaptive variation underpinning survival in distinct habitats: L1 had the highest light absorption efficiency and lowest thermal tolerance, suggesting that it is a classic reef specialist. L3 had the lowest light absorption efficiency and the highest thermal tolerance, showing that it is an extreme reef specialist. L2 had intermediate light absorption efficiency and thermal tolerance, suggesting that is a generalist lineage. These findings reveal diverging holobiont strategies to cope with extreme conditions. Resolving coral lineages is key to understanding variation in thermal tolerance among coral populations, can strengthen our understanding of coral evolution and symbiosis, and support global conservation and restoration efforts.
随着海洋变暖威胁到全球的珊瑚礁,识别具有适应更高温度的珊瑚对于保护至关重要。遗传上不同但形态上相似(即隐蔽)的珊瑚种群可以适应极端生境,并在压力条件下茁壮成长。这些珊瑚通常与当地有益的微生物群落(共生藻和细菌)相关联,掩盖了耐热性的主要驱动因素。在这里,我们利用具有高保真度的共生体(大型多孔石珊瑚)来研究 C15 共生藻,以调查经典(“典型”条件)和具有更高温度和光衰减特征的极端珊瑚礁之间的适应性变化。我们发现了三个具有有限微观形态变异的隐蔽谱系;一个谱系主导经典珊瑚礁(L1),一个谱系分布更为均匀(L2),另一个谱系则局限于极端珊瑚礁(L3)。L1 和 L2 与距离约 4300 公里的种群更为密切相关,这表明有些谱系分布广泛。所有珊瑚都携带 Cladocopium C15 共生藻;L1 和 L2 共享一个共生藻池,其组成在珊瑚礁类型之间有所不同,但 L3 主要携带在其他谱系中未发现的独特共生藻菌株。在谱系特异性方面,不同珊瑚礁类型的细菌伙伴组合存在差异,这表明谱系采用了不同的微生物组调节策略。对光捕获能力和耐热性的分析揭示了不同生境中生存的适应性变化:L1 具有最高的光吸收效率和最低的耐热性,表明它是经典珊瑚礁的特有种。L3 具有最低的光吸收效率和最高的耐热性,表明它是极端珊瑚礁的特有种。L2 具有中等的光吸收效率和耐热性,表明它是一个普通谱系。这些发现揭示了不同的共生体策略来应对极端条件。解析珊瑚谱系是理解珊瑚种群耐热性变化的关键,有助于加强对珊瑚进化和共生关系的理解,并支持全球保护和恢复工作。