Suppr超能文献

巴尔的摩市低收入儿童的地理空间食物环境暴露与肥胖:关联因数据来源和处理方法而异。

Geospatial Food Environment Exposure and Obesity Among Low Income Baltimore City Children: Associations Differ by Data Source and Processing Method.

作者信息

Kharmats Anna Y, Corrigan Anne E, Curriero Frank C, Neff Roni, Caulfield Laura, Kennedy Caitlin E, Whitley Jessica, Montazer Jaleh S, Hu Lu, Gittelsohn Joel

机构信息

New York University Grossman School of Medicine, Department of Population Health, Baltimore, MD.

Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, MD.

出版信息

J Hunger Environ Nutr. 2024;19(5):694-717. doi: 10.1080/19320248.2022.2090882. Epub 2022 Jul 13.

Abstract

Due to the high prevalence of childhood obesity, it is imperative to assess the relationship children's access to food retailers and obesity. However, the influence of methodological decisions on these associations has been understudied. We examined relationships between different measures of geospatial food environment (using 4 data sources, and 2 data processing methods), and BMI in a sample of low-income children in Baltimore, Maryland. The choice of data sources and data processing methods produced large differences in estimates of children's exposures to certain store types, such as supermarket-like stores, but had less impact on associations with BMI z-scores.

摘要

由于儿童肥胖症的高流行率,评估儿童接触食品零售商与肥胖之间的关系势在必行。然而,方法学决策对这些关联的影响尚未得到充分研究。我们在马里兰州巴尔的摩市的低收入儿童样本中,研究了地理空间食品环境的不同测量方法(使用4种数据来源和2种数据处理方法)与体重指数(BMI)之间的关系。数据来源和数据处理方法的选择在儿童接触某些商店类型(如类似超市的商店)的估计值上产生了很大差异,但对与BMI z评分的关联影响较小。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验