Suppr超能文献

因果推断方法。第1部分:因果图与混杂因素。

Methods in causal inference. Part 1: causal diagrams and confounding.

作者信息

Bulbulia Joseph A

机构信息

Victoria University of Wellington, Wellington, New Zealand.

出版信息

Evol Hum Sci. 2024 Sep 27;6:e40. doi: 10.1017/ehs.2024.35. eCollection 2024.

Abstract

Causal inference requires contrasting counterfactual states under specified interventions. Obtaining these contrasts from data depends on explicit assumptions and careful, multi-step workflows. Causal diagrams are crucial for clarifying the identifiability of counterfactual contrasts from data. Here, I explain how to use causal directed acyclic graphs (DAGs) to determine if and how causal effects can be identified from non-experimental observational data, offering practical reporting tips and suggestions to avoid common pitfalls.

摘要

因果推断需要在特定干预下对比反事实状态。从数据中获取这些对比取决于明确的假设和细致的多步骤工作流程。因果图对于阐明从数据中识别反事实对比的可识别性至关重要。在此,我将解释如何使用因果有向无环图(DAG)来确定是否以及如何从非实验性观察数据中识别因果效应,并提供实用的报告提示和建议以避免常见陷阱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7f7/11588567/bab214ab9fa2/S2513843X24000355_figAb.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验