Bulbulia Joseph A
Victoria University of Wellington, Wellington, New Zealand.
Evol Hum Sci. 2024 Sep 27;6:e40. doi: 10.1017/ehs.2024.35. eCollection 2024.
Causal inference requires contrasting counterfactual states under specified interventions. Obtaining these contrasts from data depends on explicit assumptions and careful, multi-step workflows. Causal diagrams are crucial for clarifying the identifiability of counterfactual contrasts from data. Here, I explain how to use causal directed acyclic graphs (DAGs) to determine if and how causal effects can be identified from non-experimental observational data, offering practical reporting tips and suggestions to avoid common pitfalls.
因果推断需要在特定干预下对比反事实状态。从数据中获取这些对比取决于明确的假设和细致的多步骤工作流程。因果图对于阐明从数据中识别反事实对比的可识别性至关重要。在此,我将解释如何使用因果有向无环图(DAG)来确定是否以及如何从非实验性观察数据中识别因果效应,并提供实用的报告提示和建议以避免常见陷阱。