Suppr超能文献

肾上腺不确定结节:基于CT的不同机器学习模型对肺癌患者肾上腺转移预测的影像组学分析

Adrenal indeterminate nodules: CT-based radiomics analysis of different machine learning models for predicting adrenal metastases in lung cancer patients.

作者信息

Cao Lixiu, Yang Haoxuan, Wu Huijing, Zhong Hongbo, Cai Haifeng, Yu Yixing, Zhu Lei, Liu Yongliang, Li Jingwu

机构信息

Department of Nuclear Medical Imaging, Tangshan People's Hospital, Tangshan, Hebei, China.

Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

出版信息

Front Oncol. 2024 Nov 12;14:1411214. doi: 10.3389/fonc.2024.1411214. eCollection 2024.

Abstract

OBJECTIVE

There is a paucity of research using different machine learning algorithms for distinguishing between adrenal metastases and benign tumors in lung cancer patients with adrenal indeterminate nodules based on plain and biphasic-enhanced CT radiomics.

MATERIALS AND METHODS

This study retrospectively enrolled 292 lung cancer patients with adrenal indeterminate nodules (training dataset, 205 (benign, 96; metastases, 109); testing dataset, 87 (benign, 42; metastases, 45)). Radiomics features were extracted from the plain, arterial, and portal CT images, respectively. The independent risk radiomics features selected by least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression (LR) were used to construct the single-phase and combined-phase radiomics models, respectively, by support vector machine (SVM), decision tree (DT), random forest (RF), and LR. The independent clinical-pathological and radiological risk factors for predicting adrenal metastases selected by using univariate and multivariate LR were used to develop the traditional model. The optimal model was selected by ROC curve, and the models' clinical values were estimated by decision curve analysis (DCA).

RESULTS

In the testing dataset, all SVM radiomics models showed the best robustness and efficiency, and then RF, LR, and DT models. The combined radiomics model had the best ability in predicting adrenal metastases (AUC=0.938), and then the plain (AUC=0.935), arterial (AUC=0.870), and portal radiomics model (AUC=0.851). Besides, compared to clinical-pathological-radiological model (AUC=0.870), the discriminatory capability of the plain and combined radiomics model were further improved. All radiomics models had good calibration curves and DCA showed the plain and combined radiomics models had more optimal clinical efficacy compared to other models, with the combined radiomics model having the largest net benefit.

CONCLUSIONS

The combined SVM radiomics model can non-invasively and efficiently predict adrenal metastatic nodules in lung cancer patients. In addition, the plain radiomics model with high predictive performance provides a convenient and accurate new method for patients with contraindications in enhanced CT.

摘要

目的

基于平扫及双期增强CT影像组学,利用不同机器学习算法区分肺癌肾上腺结节患者肾上腺转移瘤与良性肿瘤的研究较少。

材料与方法

本研究回顾性纳入292例肺癌肾上腺结节患者(训练数据集,205例(良性96例,转移瘤109例);测试数据集,87例(良性42例,转移瘤45例))。分别从平扫、动脉期和门脉期CT图像中提取影像组学特征。通过最小绝对收缩和选择算子(LASSO)和多因素逻辑回归(LR)选择的独立风险影像组学特征,分别采用支持向量机(SVM)、决策树(DT)、随机森林(RF)和LR构建单相和联合相影像组学模型。采用单因素和多因素LR选择的预测肾上腺转移的独立临床病理和放射学危险因素构建传统模型。通过ROC曲线选择最佳模型,并通过决策曲线分析(DCA)评估模型的临床价值。

结果

在测试数据集中,所有SVM影像组学模型表现出最佳的稳健性和效率,其次是RF、LR和DT模型。联合影像组学模型预测肾上腺转移的能力最佳(AUC=0.938),其次是平扫(AUC=0.935)、动脉期(AUC=0.870)和门脉期影像组学模型(AUC=0.851)。此外,与临床病理放射学模型(AUC=0.870)相比,平扫和联合影像组学模型的鉴别能力进一步提高。所有影像组学模型均具有良好的校准曲线,DCA显示平扫和联合影像组学模型相比其他模型具有更优的临床疗效,联合影像组学模型净效益最大。

结论

联合SVM影像组学模型可无创、高效地预测肺癌患者肾上腺转移结节。此外,具有高预测性能的平扫影像组学模型为增强CT检查禁忌的患者提供了一种便捷、准确的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3d/11588585/435452202a80/fonc-14-1411214-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验