Suppr超能文献

钙调蛋白激酶II依赖性非经典视黄酸诱导基因I途径促进流感病毒在感染急性期的传播。

CaMKII-dependent non-canonical RIG-I pathway promotes influenza virus propagation in the acute-phase of infection.

作者信息

Hama Shinichiro, Watanabe-Takahashi Miho, Nishimura Hiroki, Omi Jumpei, Tamada Masakazu, Saitoh Takashi, Maenaka Katsumi, Okuda Yuta, Ikegami Aoi, Kitagawa Asami, Furuta Koudai, Izumi Kana, Shimizu Eiko, Nishizono Takashi, Fujiwara Makoto, Miyasaka Tomohiro, Takamori Shigeo, Takayanagi Hiroshi, Nishikawa Keizo, Kobayashi Toshihiko, Toyama-Sorimachi Noriko, Yamashita Makoto, Senda Toshiya, Hirokawa Takatsugu, Bito Haruhiko, Nishikawa Kiyotaka

机构信息

Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.

Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

出版信息

mBio. 2025 Jan 8;16(1):e0008724. doi: 10.1128/mbio.00087-24. Epub 2024 Nov 27.

Abstract

Ca/calmodulin-dependent protein kinase II (CaMKII) is one of hundreds of host-cell factors involved in the propagation of type A influenza virus (IAV), although its mechanism of action is unknown. Here, we identified CaMKII inhibitory peptide M3 by targeting its kinase domain using affinity-based screening of a tailored random peptide library. M3 inhibited IAV cytopathicity and propagation in cells by specifically inhibiting the acute-phase activation of retinoic acid-inducible gene I (RIG-I), which is uniquely regulated by CaMKII. Downstream of the RIG-I pathway activated TBK1 and then IRF3, which induced small but sufficient amounts of transcripts of the genes for IFN α/β to provide the capped 5'-ends that were used preferentially as primers to synthesize viral mRNAs by the cap-snatching mechanism. Importantly, knockout of in cells almost completely inhibited the expression of IFN mRNAs and subsequent viral NP mRNA early in infection (up to 6 h after infection), which then protected cells from cytopathicity 24 h after infection. Thus, CaMKII-dependent acute-phase activation of RIG-I promoted IAV propagation, whereas the canonical RIG-I pathway stimulated antiviral activity by inducing large amounts of mRNA for IFNs and then for antiviral proteins later in infection. Co-administration of M3 with IAV infection rescued mice from the lethality and greatly reduced proinflammatory cytokine mRNA expression in the lung, indicating that M3 is highly effective against IAV . Thus, regulation of the CaMKII-dependent non-canonical RIG-I pathway may provide a novel host-factor-directed antiviral therapy.IMPORTANCEThe recent emergence of IAV strains resistant to commonly used therapeutic agents that target viral proteins has exacerbated the need for innovative strategies. Here, we originally identified CaMKII-inhibitory peptide M3, which efficiently inhibits IAV-lethality and . M3 specifically inhibited the acute-phase activation of RIG-I, which is a novel pathway to promote IAV propagation. Thus, this pathway acts in an opposite manner compared with the canonical RIG-I pathway, which plays essential roles in antiviral innate immune response later in infection. The CaMKII-dependent non-canonical RIG-I pathway can be a promising and novel drug target for the treatment of infections.

摘要

钙/钙调蛋白依赖性蛋白激酶II(CaMKII)是参与甲型流感病毒(IAV)传播的数百种宿主细胞因子之一,但其作用机制尚不清楚。在此,我们通过基于亲和力的定制随机肽库筛选,靶向其激酶结构域,鉴定出CaMKII抑制肽M3。M3通过特异性抑制视黄酸诱导基因I(RIG-I)的急性期激活来抑制IAV在细胞中的细胞病变效应和增殖,而RIG-I的急性期激活由CaMKII独特调控。在RIG-I途径的下游,激活了TBK1,然后激活IRF3,后者诱导产生少量但足以提供IFNα/β基因转录本的量,这些转录本的5'端带有帽结构,被优先用作引物,通过抢帽机制合成病毒mRNA。重要的是,细胞中CaMKII基因敲除几乎完全抑制了感染早期(感染后6小时内)IFN mRNA的表达以及随后病毒NP mRNA的表达,从而在感染后24小时保护细胞免受细胞病变效应。因此,CaMKII依赖性的RIG-I急性期激活促进了IAV的传播,而经典的RIG-I途径通过在感染后期诱导大量IFN mRNA以及随后的抗病毒蛋白mRNA来刺激抗病毒活性。M3与IAV感染联合给药可使小鼠免于致死,并大大降低肺中促炎细胞因子mRNA的表达,表明M3对IAV非常有效。因此,调控CaMKII依赖性的非经典RIG-I途径可能提供一种新型的宿主因子导向的抗病毒疗法。重要性:最近出现的对常用的靶向病毒蛋白的治疗药物耐药的IAV毒株,加剧了对创新策略的需求。在此,我们最初鉴定出CaMKII抑制肽M3,它能有效抑制IAV致死性。M3特异性抑制RIG-I的急性期激活,这是促进IAV传播的一条新途径。因此,这条途径与经典的RIG-I途径作用相反,后者在感染后期的抗病毒固有免疫反应中起重要作用。CaMKII依赖性的非经典RIG-I途径可能是治疗感染的一个有前景的新型药物靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b722/11708044/7ff14b70dd14/mbio.00087-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验