Suppr超能文献

使用无标记深度学习算法评估5-羟色胺(5-HT)和5-HT受体拮抗剂对雄性大鼠中DOI诱导的头部抽搐反应的影响。

Assessing the effects of 5-HT and 5-HT receptor antagonists on DOI-induced head-twitch response in male rats using marker-less deep learning algorithms.

作者信息

Cyrano Ewelina, Popik Piotr

机构信息

Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.

出版信息

Pharmacol Rep. 2025 Feb;77(1):135-144. doi: 10.1007/s43440-024-00679-1. Epub 2024 Nov 27.

Abstract

BACKGROUND

Serotonergic psychedelics, which display a high affinity and specificity for 5-HT receptors like 2,5-dimethoxy-4-iodoamphetamine (DOI), reliably induce a head-twitch response in rodents characterized by paroxysmal, high-frequency head rotations. Traditionally, this behavior is manually counted by a trained observer. Although automation could simplify and facilitate data collection, current techniques require the surgical implantation of magnetic markers into the rodent's skull or ear.

METHODS

This study aimed to assess the feasibility of a marker-less workflow for detecting head-twitch responses using deep learning algorithms. High-speed videos were analyzed using the DeepLabCut neural network to track head movements, and the Simple Behavioral Analysis (SimBA) toolkit was employed to build models identifying specific head-twitch responses.

RESULTS

In studying DOI (0.3125-2.5 mg/kg) effects, the deep learning algorithm workflow demonstrated a significant correlation with human observations. As expected, the preferential 5-HT receptor antagonist ketanserin (0.625 mg/kg) attenuated DOI (1.25 mg/kg)-induced head-twitch responses. In contrast, the 5-HT receptor antagonists SB 699,551 (3 and 10 mg/kg), and ASP 5736 (0.01 and 0.03 mg/kg) failed to do so.

CONCLUSIONS

Previous drug discrimination studies demonstrated that the 5-HT receptor antagonists attenuated the interoceptive cue of a potent hallucinogen LSD, suggesting their anti-hallucinatory effects. Nonetheless, the present results were not surprising and support the head-twitch response as selective for 5-HT and not 5-HT receptor activation. We conclude that the DeepLabCut and SimBA toolkits offer a high level of objectivity and can accurately and efficiently identify compounds that induce or inhibit head-twitch responses, making them valuable tools for high-throughput research.

摘要

背景

血清素能致幻剂,如2,5-二甲氧基-4-碘苯丙胺(DOI),对5-羟色胺(5-HT)受体具有高亲和力和特异性,能在啮齿动物中可靠地诱发头部抽搐反应,其特征为阵发性、高频的头部旋转。传统上,这种行为由训练有素的观察者手动计数。尽管自动化可以简化并便于数据收集,但目前的技术需要将磁性标记物手术植入啮齿动物的头骨或耳朵。

方法

本研究旨在评估使用深度学习算法进行无标记工作流程检测头部抽搐反应的可行性。使用深度实验室切割(DeepLabCut)神经网络分析高速视频以跟踪头部运动,并采用简单行为分析(SimBA)工具包构建识别特定头部抽搐反应的模型。

结果

在研究DOI(0.3125 - 2.5毫克/千克)的作用时,深度学习算法工作流程与人类观察结果显示出显著相关性。正如预期的那样,选择性5-HT受体拮抗剂酮色林(0.625毫克/千克)减弱了DOI(1.25毫克/千克)诱导的头部抽搐反应。相比之下,5-HT受体拮抗剂SB 699,551(3和10毫克/千克)以及ASP 5736(0.01和0.03毫克/千克)则未能做到这一点。

结论

先前的药物辨别研究表明,5-HT受体拮抗剂减弱了强效致幻剂麦角酸二乙酰胺(LSD)的内感受性线索,表明它们具有抗幻觉作用。尽管如此,目前的结果并不令人惊讶,并支持头部抽搐反应对5-HT具有选择性,而非5-HT受体激活。我们得出结论,DeepLabCut和SimBA工具包具有高度的客观性,能够准确、高效地识别诱导或抑制头部抽搐反应的化合物,使其成为高通量研究的有价值工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验