Suppr超能文献

使用DeepLabCut和简单行为分析对C57BL/6J小鼠的头部抽搐反应进行快速、开源和自动化定量分析。

Rapid, open-source, and automated quantification of the head twitch response in C57BL/6J mice using DeepLabCut and Simple Behavioral Analysis.

作者信息

Maitland Alexander D, Gonzalez Nicholas R, Walther Donna, Pereira Francisco, Baumann Michael H, Glatfelter Grant C

出版信息

bioRxiv. 2025 May 1:2025.04.28.650242. doi: 10.1101/2025.04.28.650242.

Abstract

Serotonergic psychedelics induce the head twitch response (HTR) in mice, an index of serotonin (5-HT) 2A receptor (5-HT2A) agonism and a behavioral proxy for psychedelic effects in humans. Existing methods for detecting HTRs include time-consuming visual scoring, invasive magnetometer-based approaches, and analysis of videos using semi- automated commercial software. Here, we present a new automated approach for quantifying HTRs using the open-source machine learning-based toolkits, DeepLabCut (DLC) and Simple Behavioral Analysis (SimBA). First, pose estimation DLC models were trained to predict X,Y coordinates of 13 body parts of C57BL/6J mice using historical experimental videos of HTRs induced by various psychedelic drugs and experimental conditions. Next, a non-overlapping set of historical experimental videos was analyzed and used to train SimBA random forest behavioral classifiers to predict the presence of the HTR. The DLC+SimBA approach was then validated using a separate subset of visually scored videos. DLC+SimBA model performance was assessed at different video frame rates (120, 60, 30 frames per second or fps) and resolutions (50%, 25%, 12.5%). Our results indicate that HTRs can be quantified accurately at 120 fps and 50% resolution (precision = 95.45, recall = 95.56, F1 = 95.51) or at lower frame rates (i.e., 60 fps and 50% resolution, precision = 91.00, recall = 86.23, F1 = 88.55). The best performing DLC+SimBA model combination was deployed to evaluate the effects of bufotenine, a tryptamine derivative with uncharacterized potency and efficacy in the HTR paradigm. Interestingly, bufotenine only induced elevated HTRs (ED50 = 0.99 mg/kg, max counts = 24) when serotonin 1A receptors (5-HT1A) were pharmacologically blocked. HTR scores for a subset of 21 videos from bufotenine experiments were strongly correlated across DLC+SimBA, visual review, and semi- automated software detection methods ( = 0.98 -0.99). In summary, the DLC+SimBA approach represents a rapid and accurate new method to detect HTRs from experimental video recordings using open-source toolkits.

摘要

血清素能致幻剂可诱导小鼠产生头部抽搐反应(HTR),这是血清素(5-HT)2A受体(5-HT2A)激动作用的一个指标,也是人类致幻效果的行为替代指标。现有的检测HTR的方法包括耗时的视觉评分、基于侵入性磁力计的方法以及使用半自动商业软件对视频进行分析。在此,我们提出一种使用基于机器学习的开源工具包DeepLabCut(DLC)和简单行为分析(SimBA)来量化HTR的新自动化方法。首先,使用各种致幻药物和实验条件诱导产生HTR的历史实验视频,训练姿态估计DLC模型来预测C57BL/6J小鼠13个身体部位的X、Y坐标。接下来,对一组不重叠的历史实验视频进行分析,并用于训练SimBA随机森林行为分类器以预测HTR的存在。然后使用另一组视觉评分视频对DLC+SimBA方法进行验证。在不同的视频帧率(每秒120、60、30帧或fps)和分辨率(50%、25%、12.5%)下评估DLC+SimBA模型的性能。我们的结果表明,在120 fps和50%分辨率下(精确率 = 95.45,召回率 = 95.56,F1值 = 95.51)或在较低帧率下(即60 fps和50%分辨率,精确率 = 91.00,召回率 = 86.23,F1值 = 88.55)可以准确量化HTR。性能最佳的DLC+SimBA模型组合被用于评估蟾蜍色胺的效果,蟾蜍色胺是一种在HTR范式中效力和功效未明确的色胺衍生物。有趣的是,只有当血清素1A受体(5-HT1A)被药理阻断时,蟾蜍色胺才会诱导HTR升高(半数有效剂量 = 0.99 mg/kg,最大计数 = 24)。来自蟾蜍色胺实验的21个视频子集的HTR评分在DLC+SimBA、视觉检查和半自动软件检测方法之间具有很强的相关性(相关系数 = 0.98 - 0.99)。总之,DLC+SimBA方法代表了一种使用开源工具包从实验视频记录中检测HTR的快速且准确的新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验