Li Wenting, Han Bing, Liu Yuhan, Xu Jingyi, He Huarui, Wang Gege, Li Junshan, Zhai Yaxin, Zhu Xiaolin, Zhu Yongfa
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202421356. doi: 10.1002/anie.202421356. Epub 2024 Dec 4.
Photocatalytic hydrogen peroxide (HO) production has emerged as an attractive alternative to the traditional anthraquinone process. However, its performance is often hindered by low selectivity and sluggish kinetics of oxygen reduction reaction (ORR). Herein, we report an anthrazoline-based supramolecular photocatalyst, SA-SADF-H, featuring an unsymmetric protonation structure for HO photosynthesis from water and air. The introduction of unsymmetric protonation disrupts the initial mirror symmetry of SADF, significantly enhancing the molecular dipole and facilitating efficient charge separation and electron transfer. Additionally, this modification increases the hydrophilicity of SA-SADF-H, enabling the interaction of water and dissolved oxygen with the catalytic sites. The altered electron density distribution creates numerous dual active sites for Yeager-type O adsorption, facilitating an efficient ORR towards HO via a direct one-step two-electron pathway. Notably, SA-SADF-H achieves an outstanding photocatalytic HO production at a rate of 4666.7 μmol L h, with a remarkable solar-to-chemical conversion (SCC) of 1.35 %, surpassing most organic photocatalytic systems. Furthermore, SA-SADF-H demonstrates remarkable photocatalytic antibacterial activity, achieving 100 % antibacterial efficiency against Staphylococcus aureus within 60 min.
光催化过氧化氢(HO)的产生已成为传统蒽醌法颇具吸引力的替代方法。然而,其性能常常受到氧还原反应(ORR)选择性低和动力学缓慢的阻碍。在此,我们报道了一种基于蒽唑啉的超分子光催化剂SA-SADF-H,其具有不对称质子化结构,用于从水和空气中进行HO光合作用。不对称质子化的引入打破了SADF最初的镜像对称性,显著增强了分子偶极矩,并促进了有效的电荷分离和电子转移。此外,这种修饰增加了SA-SADF-H的亲水性,使水和溶解氧能够与催化位点相互作用。改变的电子密度分布为叶格尔型O吸附创造了众多双活性位点,通过直接的一步双电子途径促进了向HO的高效ORR。值得注意的是,SA-SADF-H以4666.7 μmol·L⁻¹·h的速率实现了出色的光催化HO产生,具有1.35%的显著太阳能到化学能转换(SCC),超过了大多数有机光催化体系。此外,SA-SADF-H表现出显著的光催化抗菌活性,在60分钟内对金黄色葡萄球菌实现了100%的抗菌效率。