Suppr超能文献

基于MRI的影像组学分析对颞下颌关节盘移位的评估

Evaluation of temporomandibular joint disc displacement with MRI-based radiomics analysis.

作者信息

Duyan Yüksel Hazal, Orhan Kaan, Evlice Burcu, Kaya Ömer

机构信息

Department of Oral Diagnosis and Maxillofacial Radiology, Çukurova University Faculty of Dentistry, Adana, 01380, Türkiye.

Department of Oral Diagnosis and Maxillofacial Radiology, Ankara University Faculty of Dentistry, Ankara, 06500, Türkiye.

出版信息

Dentomaxillofac Radiol. 2025 Jan 1;54(1):19-27. doi: 10.1093/dmfr/twae066.

Abstract

OBJECTIVES

The purpose of this study was to propose a machine learning model and assess its ability to classify temporomandibular joint (TMJ) disc displacements on MR T1-weighted and proton density-weighted images.

METHODS

This retrospective cohort study included 180 TMJs from 90 patients with TMJ signs and symptoms. A radiomics platform was used to extract imaging features of disc displacements. Thereafter, different machine learning algorithms and logistic regression were implemented on radiomics features for feature selection, classification, and prediction. The radiomics features included first-order statistics, size- and shape-based features, and texture features. Six classifiers, including logistic regression, random forest, decision tree, k-nearest neighbours (KNN), XGBoost, and support vector machine were used for a model building which could predict the TMJ disc displacements. The performance of models was evaluated by sensitivity, specificity, and ROC curve.

RESULTS

KNN classifier was found to be the most optimal machine learning model for prediction of TMJ disc displacements. The AUC, sensitivity, and specificity for the training set were 0.944, 0.771, 0.918 for normal, anterior disc displacement with reduction (ADDwR) and anterior disc displacement without reduction (ADDwoR) while testing set were 0.913, 0.716, and 1 for normal, ADDwR, and ADDwoR. For TMJ disc displacements, skewness, root mean squared, kurtosis, minimum, large area low grey level emphasis, grey level non-uniformity, and long-run high grey level emphasis, were selected as optimal features.

CONCLUSIONS

This study has proposed a machine learning model by KNN analysis on TMJ MR images, which can be used for TMJ disc displacements.

摘要

目的

本研究旨在提出一种机器学习模型,并评估其在磁共振T1加权和质子密度加权图像上对颞下颌关节(TMJ)盘移位进行分类的能力。

方法

这项回顾性队列研究纳入了90例有TMJ体征和症状患者的180个TMJ。使用放射组学平台提取盘移位的影像特征。此后,对放射组学特征实施不同的机器学习算法和逻辑回归进行特征选择、分类和预测。放射组学特征包括一阶统计量、基于大小和形状的特征以及纹理特征。使用六种分类器,包括逻辑回归、随机森林、决策树、k近邻(KNN)、XGBoost和支持向量机进行模型构建,以预测TMJ盘移位。通过敏感性、特异性和ROC曲线评估模型性能。

结果

发现KNN分类器是预测TMJ盘移位的最优机器学习模型。训练集对于正常、可复性盘前移位(ADDwR)和不可复性盘前移位(ADDwoR)的AUC、敏感性和特异性分别为0.944、0.771、0.918,而测试集对于正常、ADDwR和ADDwoR分别为0.913、0.716和1。对于TMJ盘移位,选择偏度、均方根、峰度、最小值、大面积低灰度级强调、灰度级不均匀性和长程高灰度级强调作为最优特征。

结论

本研究通过对TMJ磁共振图像进行KNN分析提出了一种机器学习模型,可用于TMJ盘移位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验