Bai Penggang, Yang Yihan, Tang Jun, Xi Daoyi, Hao Yongya, Jiang Lili, Yin Hua, Liu Tao
University of Chinese Academy of Sciences, Beijing, 100049, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
Metab Eng. 2025 Jan;87:95-108. doi: 10.1016/j.ymben.2024.11.012. Epub 2024 Nov 26.
Complex phenylethanoid glycosides (PhGs), such as verbascoside and echinacoside, comprise a vital family of natural products with renowned nutraceutical and pharmaceutical significance. Despite the high demand for these compounds across various industries, traditional plant extraction methods yield insufficient quantities, highlighting the need for alternative production methods. Therefore, this paper reports the successful engineering of Saccharomyces cerevisiae cell factories for the efficient production of complex PhGs from glucose. First, key pathway enzymes with enhanced catalytic activities in yeast were primarily screened from various verbascoside-producing plants. Second, intermediate osmanthuside B was produced with a titer of 21.5 ± 1.5 mg/L from glucose by overexpressing several enzymes, including glucosyltransferase RrUGT33 from Rhdiola rosea, acyltransferase SiAT, and 1,3-rhamnosyltransferase SiRT from Sesamum indicum, UDP-L-rhamnose synthase AtRHM2, and 4-coumarate: coenzyme A ligase At4CL1 from Arabidopsis thaliana in a p-coumaric acid-overproducing S. cerevisiae strain. Third, the production of osmanthuside B was further enhanced by increasing the copy number of SiAT and AtRHM2 in genome and diverting L-tyrosine into tyrosol biosynthesis by introducing an aromatic aldehyde synthase PcAAS from Petroselinum crispum with a titer of 320.6 ± 59.3 mg/L. Fourth, the biosynthesis of verbascoside was accomplished by integrating genes CYP98A20 and AtCPR1 into the chromosomes of the osmanthuside B-producing strain, the titer reached 184.7 ± 5.7 mg/L. Furthermore, the overexpression of the glucose-6-phosphate dehydrogenase (ZWF1) led to significantly enhanced verbascoside production to 230.6 ± 11.8 mg/L. The strains were further engineered to produce echinacoside with a titer of 184.2 ± 11.2 mg/L. Finally, the fed-batch fermentation in a 5-L bioreactor yielded 4497.9 ± 285.2 mg/L of verbascoside or 3617.4 ± 117.4 mg/L of echinacoside. This work provides a crucial foundation for the green, industrial, and sustainable production of verbascoside and echinacoside and sets an initial point for the microbial production of other complex PhG derivatives.
复杂苯乙醇苷(PhGs),如毛蕊花糖苷和松果菊苷,是一类重要的天然产物家族,具有显著的营养保健和药用价值。尽管这些化合物在各个行业都有很高的需求,但传统的植物提取方法产量不足,凸显了需要替代生产方法的必要性。因此,本文报道了成功构建酿酒酵母细胞工厂,用于从葡萄糖高效生产复杂的PhGs。首先,主要从各种生产毛蕊花糖苷的植物中筛选出在酵母中具有增强催化活性的关键途径酶。其次,通过在一株过量生产对香豆酸的酿酒酵母菌株中过表达几种酶,包括来自红景天的葡萄糖基转移酶RrUGT33、酰基转移酶SiAT、来自芝麻的1,3-鼠李糖基转移酶SiRT、UDP-L-鼠李糖合酶AtRHM2以及来自拟南芥的4-香豆酸:辅酶A连接酶At4CL1,从葡萄糖生产出了滴度为21.5±1.5mg/L的中间产物桂花苷B。第三,通过增加基因组中SiAT和AtRHM2的拷贝数,并引入来自皱叶欧芹的芳香醛合酶PcAAS将L-酪氨酸转向酪醇生物合成,进一步提高了桂花苷B的产量,滴度达到320.6±59.3mg/L。第四,通过将基因CYP98A20和AtCPR1整合到生产桂花苷B的菌株染色体上,完成了毛蕊花糖苷的生物合成,滴度达到184.7±5.7mg/L。此外,葡萄糖-6-磷酸脱氢酶(ZWF1)的过表达导致毛蕊花糖苷产量显著提高至230.6±11.8mg/L。这些菌株经过进一步改造,生产出了滴度为184.2±11.2mg/L的松果菊苷。最后,在5-L生物反应器中的补料分批发酵产生了4497.9±285.2mg/L的毛蕊花糖苷或3617.4±117.4mg/L的松果菊苷。这项工作为毛蕊花糖苷和松果菊苷的绿色、工业化和可持续生产提供了关键基础,并为其他复杂PhG衍生物的微生物生产奠定了基础。