Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
Plant Commun. 2023 Jul 10;4(4):100592. doi: 10.1016/j.xplc.2023.100592. Epub 2023 Mar 20.
Verbascoside, which was first discovered in 1963, is a well-known phenylethanoid glycoside (PhG) that exhibits antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities and contributes to the therapeutic effects of many medicinal plants. However, the biosynthetic pathway of verbascoside remains to be fully elucidated. Here, we report the identification of two missing enzymes in the verbascoside biosynthesis pathway by transcriptome mining and in vitro enzymatic assays. Specifically, a BAHD acyltransferase (hydroxycinnamoyl-CoA:salidroside hydroxycinnamoyltransferase [SHCT]) was shown to catalyze the regioselective acylation of salidroside to form osmanthuside A, and a CYP98 hydroxylase (osmanthuside B 3,3'-hydroxylase [OBH]) was shown to catalyze meta-hydroxylations of the p-coumaroyl and tyrosol moieties of osmanthuside B to complete the biosynthesis of verbascoside. Because SHCTs and OBHs are found in many Lamiales species that produce verbascoside, this pathway may be general. The findings from the study provide novel insights into the formation of caffeoyl and hydroxytyrosol moieties in natural product biosynthetic pathways. In addition, with the newly acquired enzymes, we achieved heterologous production of osmanthuside B, verbascoside, and ligupurpuroside B in Escherichia coli; this work lays a foundation for sustainable production of verbascoside and other PhGs in micro-organisms.
毛蕊花糖苷于 1963 年首次被发现,是一种众所周知的苯乙醇苷(PhG),具有抗氧化、抗炎、抗菌和神经保护活性,并有助于许多药用植物的治疗效果。然而,毛蕊花糖苷的生物合成途径仍有待充分阐明。在这里,我们通过转录组挖掘和体外酶促实验鉴定了毛蕊花糖苷生物合成途径中两个缺失的酶。具体来说,BAHD 酰基转移酶(羟基肉桂酰-CoA:山柰酚羟基肉桂酰基转移酶 [SHCT])被证明能够催化山柰酚的区域选择性酰化,形成奥索马素 A,而 CYP98 羟化酶(奥索马素 B 3,3'-羟化酶 [OBH])被证明能够催化奥索马素 B 中对香豆酰基和酪醇部分的间羟化,完成毛蕊花糖苷的生物合成。由于 SHCT 和 OBH 存在于许多产生毛蕊花糖苷的唇形科物种中,因此该途径可能具有普遍性。该研究的结果为天然产物生物合成途径中咖啡酰基和羟基酪醇部分的形成提供了新的见解。此外,利用新获得的酶,我们在大肠杆菌中实现了奥索马素 B、毛蕊花糖苷和 Ligupurpuroside B 的异源生产;这项工作为微生物中毛蕊花糖苷和其他 PhG 的可持续生产奠定了基础。