Suppr超能文献

SimpleMating:用于通过基因组选择预测和优化育种杂交的R包。

SimpleMating: R-package for prediction and optimization of breeding crosses using genomic selection.

作者信息

Peixoto Marco Antônio, Amadeu Rodrigo Rampazo, Bhering Leonardo Lopes, Ferrão Luís Felipe V, Munoz Patrício R, Resende Márcio F R

机构信息

Laboratório de Biometria, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.

Sweet Corn Breeding and Genomics Lab, University of Florida, Gainesville, Florida, USA.

出版信息

Plant Genome. 2025 Mar;18(1):e20533. doi: 10.1002/tpg2.20533. Epub 2024 Nov 27.

Abstract

Selecting parents and crosses is a critical step for a successful breeding program. The ability to design crosses with high means that will maintain genetic variation in the population is the goal for long-term applications. Herein, we describe a new computational package for mate allocation in a breeding program. SimpleMating is a flexible and open-source R package originally designed to predict and optimize breeding crosses in crops with different reproductive systems and breeding designs. Divided into modules, SimpleMating first estimates the cross performance (criterion), such as mid-parental value, cross total genetic value, and/or usefulness of a set of crosses. The second module implements an optimization algorithm to maximize a target criterion while minimizing next-generation inbreeding. The software is flexible, enabling users to specify the desired number of crosses, set maximum and minimum crosses per parent, and define the maximum allowable parent relationship for creating crosses. As an outcome, SimpleMating generates a mating plan from the target parental population using single or multi-trait criteria. For example, we implemented and tested SimpleMating in a simulated maize breeding program obtained through stochastic simulations. The crosses designed via SimpleMating showed a large genetic mean over time (up to 22% more genetic gain than conventional genomic selection programs, with lesser loss of genetic diversity over time), supporting the use of this tool, as well as the use of data-driven decisions in breeding programs.

摘要

选择亲本和杂交组合是成功育种计划的关键步骤。设计具有高均值且能维持群体遗传变异的杂交组合的能力是长期应用的目标。在此,我们描述了一种用于育种计划中配偶分配的新计算软件包。SimpleMating是一个灵活的开源R软件包,最初设计用于预测和优化具有不同繁殖系统和育种设计的作物中的育种杂交组合。SimpleMating分为多个模块,首先估计杂交表现(标准),如中亲值、杂交总遗传值和/或一组杂交组合的有用性。第二个模块实现一种优化算法,以最大化目标标准,同时最小化下一代的近亲繁殖。该软件很灵活,使用户能够指定所需的杂交组合数量,设置每个亲本的最大和最小杂交组合数量,并定义创建杂交组合时允许的最大亲本亲缘关系。结果,SimpleMating使用单性状或多性状标准从目标亲本群体中生成一个交配计划。例如,我们在通过随机模拟获得的模拟玉米育种计划中实现并测试了SimpleMating。通过SimpleMating设计的杂交组合随着时间的推移显示出较大的遗传均值(比传统基因组选择计划的遗传增益高出22%,且随着时间的推移遗传多样性损失较小),支持了该工具以及育种计划中数据驱动决策的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a2/11726409/95d68f1de143/TPG2-18-e20533-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验