Suppr超能文献

通过预测杂交育种中的遗传相关性进行多性状改良。

Multi-trait Improvement by Predicting Genetic Correlations in Breeding Crosses.

机构信息

Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108.

Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108

出版信息

G3 (Bethesda). 2019 Oct 7;9(10):3153-3165. doi: 10.1534/g3.119.400406.

Abstract

The many quantitative traits of interest to plant breeders are often genetically correlated, which can complicate progress from selection. Improving multiple traits may be enhanced by identifying parent combinations - an important breeding step - that will deliver more favorable genetic correlations ( ). Modeling the segregation of genomewide markers with estimated effects may be one method of predicting in a cross, but this approach remains untested. Our objectives were to: (i) use simulations to assess the accuracy of genomewide predictions of and the long-term response to selection when selecting crosses on the basis of such predictions; and (ii) empirically measure the ability to predict genetic correlations using data from a barley ( L.) breeding program. Using simulations, we found that the accuracy to predict was generally moderate and influenced by trait heritability, population size, and genetic correlation architecture (, pleiotropy or linkage disequilibrium). Among 26 barley breeding populations, the empirical prediction accuracy of was low (-0.012) to moderate (0.42), depending on trait complexity. Within a simulated plant breeding program employing indirect selection, choosing crosses based on predicted increased multi-trait genetic gain by 11-27% compared to selection on the predicted cross mean. Importantly, when the starting genetic correlation was negative, such cross selection mitigated or prevented an unfavorable response in the trait under indirect selection. Prioritizing crosses based on predicted genetic correlation can be a feasible and effective method of improving unfavorably correlated traits in breeding programs.

摘要

对植物育种者来说,许多感兴趣的数量性状通常在遗传上是相关的,这会使选择的进展变得复杂。通过鉴定能够带来更有利遗传相关()的亲本组合(这是一个重要的育种步骤),可能会提高对多个性状的改进。利用估计效应的全基因组标记的分离来建模可能是预测杂种优势的一种方法,但这种方法尚未经过测试。我们的目标是:(i)使用模拟评估基于此类预测选择杂交时,全基因组预测杂种优势和长期选择响应的准确性;(ii)使用大麦(L.)育种计划的数据经验性地衡量预测遗传相关性的能力。使用模拟,我们发现预测杂种优势的准确性通常是中等的,并且受到性状遗传力、群体大小和遗传相关性结构(多效性或连锁不平衡)的影响。在 26 个大麦育种群体中,根据性状复杂性,杂种优势的经验预测准确性从低(-0.012)到中等(0.42)不等。在一个采用间接选择的模拟植物育种计划中,与基于预测的杂交平均值选择相比,基于预测的杂种优势选择使多性状遗传增益增加了 11-27%。重要的是,当起始遗传相关性为负时,这种杂交选择减轻或防止了间接选择下性状的不利响应。基于预测的遗传相关性优先选择杂交可以成为改善育种计划中不利相关性状的可行且有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c6b/6778794/c62f854bc3f5/3153f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验