Yanda Premakumar, Noohinejad Leila, Mao Ning, Peshcherenko Nikolai, Imasato Kazuki, Srivastava Abhay K, Guan Yicheng, Giri Bimalesh, Sharma Avdhesh Kumar, Manna Kaustuv, Parkin Stuart S P, Zhang Yang, Shekhar Chandra, Felser Claudia
Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany.
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
Adv Mater. 2025 Jan;37(3):e2411240. doi: 10.1002/adma.202411240. Epub 2024 Nov 27.
Colossal magnetoresistance (CMR) is an exotic phenomenon that allows for the efficient magnetic control of electrical resistivity and has attracted significant attention in condensed matter due to its potential for memory and spintronic applications. Heusler alloys are the subject of considerable interest in this context due to the electronic properties that result from the nontrivial band topology. Here, the observation of CMR near room temperature is reported in the shape memory Heusler alloy NiMnIn, which is attributed to the combined effects of magnetic field-induced martensite twin variant reorientation (MFIR) and magnetic field-induced structural phase transformation (MFIPT). This compound undergoes a structural phase transition from a cubic (austenite-L2) ferromagnetic (FM) to a monoclinic (martensite) antiferromagnetic (AFM), which leads to an effective increase in the size of the Fermi surface and consequently in CMR. Additionally, it exhibits significant anomalous Hall conductivity in both antiferromagnetic and ferromagnetic phases. Furthermore, it demonstrates a giant topological Hall resistivity (THR) ≈6 µΩ.cm in the vicinity of martensite transition due to the enhanced spin chirality resulting from the formation of magnetic domains with Bloch-type domain walls. The findings contribute to the understanding of the magnetotransport of Ni-Mn-In Heusler alloys, which are prospective candidates for room-temperature spintronic applications.
巨磁电阻(CMR)是一种奇特的现象,它能够实现对电阻率的有效磁控,并且因其在存储器和自旋电子学应用方面的潜力而在凝聚态物质领域引起了广泛关注。在这种背景下,由于其非平凡能带拓扑结构所导致的电子特性,赫斯勒合金成为了备受关注的对象。在此,本文报道了在形状记忆赫斯勒合金NiMnIn中观察到的近室温巨磁电阻现象,这归因于磁场诱导马氏体孪晶变体重新取向(MFIR)和磁场诱导结构相变(MFIPT)的综合效应。该化合物经历了从立方(奥氏体-L2)铁磁(FM)到单斜(马氏体)反铁磁(AFM)的结构相变,这导致费米面尺寸有效增加,进而产生巨磁电阻。此外,它在反铁磁相和铁磁相中均表现出显著的反常霍尔电导率。此外,由于具有布洛赫型畴壁的磁畴形成导致自旋手征性增强,它在马氏体转变附近表现出约6 μΩ·cm的巨大拓扑霍尔电阻率(THR)。这些发现有助于理解Ni-Mn-In赫斯勒合金的磁输运特性,该合金是室温自旋电子学应用的潜在候选材料。