Roszak Rafał, Gadina Louis, Wołos Agnieszka, Makkawi Ahmad, Mikulak-Klucznik Barbara, Bilgi Yasemin, Molga Karol, Gołębiowska Patrycja, Popik Oskar, Klucznik Tomasz, Szymkuć Sara, Moskal Martyna, Baś Sebastian, Frydrych Rafał, Mlynarski Jacek, Vakuliuk Olena, Gryko Daniel T, Grzybowski Bartosz A
Allchemy Inc., Highland, IN, USA.
Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.
Nat Commun. 2024 Nov 27;15(1):10285. doi: 10.1038/s41467-024-54611-5.
Discovery of new types of reactions is essential to organic chemistry because it expands the scope of accessible molecular scaffolds and can enable more economical syntheses of existing structures. In this context, the so-called multicomponent reactions, MCRs, are of particular interest because they can build complex scaffolds from multiple starting materials in just one step, without purification of intermediates. However, for over a century of active research, MCRs have been discovered rather than designed, and their number remains limited to only several hundred. This work demonstrates that computers taught the essential knowledge of reaction mechanisms and rules of physical-organic chemistry can design - completely autonomously and in large numbers - mechanistically distinct MCRs. Moreover, when supplemented by models to approximate kinetic rates, the algorithm can predict reaction yields and identify reactions that have potential for organocatalysis. These predictions are validated by experiments spanning different modes of reactivity and diverse product scaffolds.
发现新型反应对有机化学至关重要,因为它拓展了可及分子骨架的范围,并能实现现有结构更经济的合成。在此背景下,所谓的多组分反应(MCRs)尤其引人关注,因为它们能在一步反应中从多种起始原料构建复杂骨架,无需中间体纯化。然而,经过一个多世纪的积极研究,MCRs是被发现而非设计出来的,其数量仍然仅限于几百个。这项工作表明,通过学习反应机理和物理有机化学规则的基础知识,计算机能够完全自主且大量地设计出机理不同的MCRs。此外,当用模型来近似动力学速率时,该算法可以预测反应产率并识别具有有机催化潜力的反应。这些预测通过跨越不同反应模式和多样产物骨架的实验得到了验证。