Suppr超能文献

计算机生成的机理网络有助于确定复杂多组分反应的结果。

Computer-Generated, Mechanistic Networks Assist in Assigning the Outcomes of Complex Multicomponent Reactions.

作者信息

Krzeszewski Maciej, Vakuliuk Olena, Tasior Mariusz, Wołos Agnieszka, Roszak Rafał, Molga Karol, Teimouri Mohammad B, Grzybowski Bartosz A, Gryko Daniel T

机构信息

Institute of Organic Chemistry, Polish Academy of Sciences, Ul. Kasprzaka 44/52, Warsaw 01-224, Poland.

Allchemy, Inc., 45th Street #201, Highland, Indiana 46322, United States.

出版信息

J Am Chem Soc. 2025 May 7;147(18):15636-15644. doi: 10.1021/jacs.5c02846. Epub 2025 Apr 28.

Abstract

The appeal of multicomponent reactions, MCRs, is that they can offer highly convergent, atom-economical access to diverse and complex molecules. Traditionally, such MCRs have been discovered "by serendipity" or "by analogy" but recently the first examples of MCRs designed by computers became known. The current work reports a situation between these extremes whereby the MCRs were initially designed by analogy to a known class but yielded unexpected results─at which point, mechanistic-network search performed by the computer was used to aid the assignment of the majority (though not all) of experimentally obtained products. The novel MCRs we report are of interest because they (i) have markedly different outcomes for substrates differing in relatively small structural detail; (ii) offer very high increase in substrate-to-product complexity; and (iii) enable access to photoactive scaffolds with potential applications as functional dyes. In a broader context, our results highlight a productive synergy between human and computer-driven analyses in synthetic chemistry.

摘要

多组分反应(MCRs)的吸引力在于,它们能够以高度汇聚、原子经济的方式合成各种复杂分子。传统上,此类多组分反应是“偶然”或“类推”发现的,但最近计算机设计的首个多组分反应实例为人所知。当前的研究报告了介于这两种极端情况之间的一种情形,即多组分反应最初是类推已知类别设计的,但却产生了意想不到的结果——此时,利用计算机进行的机理网络搜索来辅助确定大部分(尽管不是全部)实验得到的产物。我们报告的新型多组分反应之所以引人关注,是因为它们:(i)对于结构细节差异相对较小的底物具有明显不同的结果;(ii)底物到产物的复杂性有非常高的增加;(iii)能够获得具有作为功能性染料潜在应用的光活性支架。在更广泛的背景下,我们的结果突出了合成化学中人工分析与计算机驱动分析之间富有成效的协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4a9/12063162/049c997d58f5/ja5c02846_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验