Suppr超能文献

基于早期 CT 影像组学预测急性胰腺炎严重程度。

Prediction of acute pancreatitis severity based on early CT radiomics.

机构信息

Department of Radiology, Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu, P. R. China.

Artificial Intelligence Imaging Laboratory, Nanjing Medical University, No.101 Longmian Avenue, Nanjing, Jiangsu, P. R. China.

出版信息

BMC Med Imaging. 2024 Nov 27;24(1):321. doi: 10.1186/s12880-024-01509-9.

Abstract

BACKGROUND

This study aims to develop and validate an integrated predictive model combining CT radiomics and clinical parameters for early assessment of acute pancreatitis severity.

METHODS

A retrospective cohort of 246 patients with acute pancreatitis was analyzed, with a 70%-30% split for training and validation groups. CT image segmentation was performed using ITK-SNAP, followed by the extraction of radiomics features. The stability of the radiomics features was assessed through inter-observer Intraclass Correlation Coefficient analysis. Feature selection was carried out using univariate analysis and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation. A radiomics model was constructed through logistic regression to compute the radiomics score. Concurrently, univariate and multivariate logistic regression were employed to identify independent clinical risk factors for the clinical model. The radiomics score and clinical variables were integrated into a combined model, which was visualized with a nomogram. Model performance and net clinical benefit were evaluated through the area under the receiver operating characteristic curve (AUC), the DeLong test, and decision curve analysis.

RESULTS

A total of 913 radiomics features demonstrated satisfactory consistency. Eight features were selected for the radiomics model. Serum calcium, C-reactive protein, and white blood cell count were identified as independent clinical predictors. The AUC of the radiomics model was 0.871 (95% CI, 0.793-0.949) in the training cohort and 0.859 (95% CI, 0.751-0.967) in the validation cohort. The clinical model achieved AUCs of 0.833 (95% CI, 0.756-0.910) and 0.810 (95% CI, 0.692-0.929) for the training and validation cohorts, respectively. The combined model outperformed both the radiomics and clinical models, with an AUC of 0.905 (95% CI, 0.837-0.973) in the training cohort and 0.908 (95% CI, 0.824-0.992) in the validation cohort. The DeLong test confirmed superior predictive performance of the combined model over both the radiomics and clinical models in the training cohort, and over the clinical model in the validation cohort. Decision curve analysis further demonstrated that the combined model provided greater net clinical benefit than the radiomics or clinical models alone.

CONCLUSION

The clinical-radiomics model offers a novel tool for the early prediction of acute pancreatitis severity, providing valuable support for clinical decision-making.

摘要

背景

本研究旨在开发并验证一种结合 CT 放射组学和临床参数的综合预测模型,用于急性胰腺炎严重程度的早期评估。

方法

回顾性分析了 246 例急性胰腺炎患者的队列,将其分为 70%-30%的训练组和验证组。使用 ITK-SNAP 进行 CT 图像分割,然后提取放射组学特征。通过观察者间的组内相关系数分析评估放射组学特征的稳定性。使用单变量分析和最小绝对值收缩和选择算子(LASSO)回归进行特征选择,采用 10 折交叉验证。通过逻辑回归构建放射组学模型以计算放射组学评分。同时,使用单变量和多变量逻辑回归确定临床模型的独立临床风险因素。将放射组学评分和临床变量整合到一个联合模型中,并用列线图可视化。通过接受者操作特征曲线(ROC)下面积(AUC)、DeLong 检验和决策曲线分析评估模型性能和净临床获益。

结果

共获得 913 个放射组学特征,一致性较好。选择了 8 个特征用于放射组学模型。血清钙、C 反应蛋白和白细胞计数被确定为独立的临床预测因子。放射组学模型在训练队列中的 AUC 为 0.871(95%CI,0.793-0.949),在验证队列中的 AUC 为 0.859(95%CI,0.751-0.967)。临床模型在训练队列中的 AUC 分别为 0.833(95%CI,0.756-0.910)和 0.810(95%CI,0.692-0.929),在验证队列中的 AUC 分别为 0.833(95%CI,0.756-0.910)和 0.810(95%CI,0.692-0.929)。联合模型优于放射组学和临床模型,在训练队列中的 AUC 为 0.905(95%CI,0.837-0.973),在验证队列中的 AUC 为 0.908(95%CI,0.824-0.992)。DeLong 检验证实,联合模型在训练队列中优于放射组学和临床模型,在验证队列中优于临床模型。决策曲线分析进一步表明,联合模型比放射组学或临床模型单独提供更大的净临床获益。

结论

临床放射组学模型为急性胰腺炎严重程度的早期预测提供了一种新的工具,为临床决策提供了有价值的支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验