Suppr超能文献

开发和验证一种用于早期预测肺炎克雷伯菌肝脓肿的临床放射组学列线图。

Development and validation of a clinical-radiomics nomogram for the early prediction of Klebsiella pneumoniae liver abscess.

机构信息

Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

出版信息

Ann Med. 2024 Dec;56(1):2413923. doi: 10.1080/07853890.2024.2413923. Epub 2024 Oct 11.

Abstract

BACKGROUND AND AIM

Pyogenic liver abscess (PLA) is a devastating and potentially life-threatening disease globally, with Klebsiella pneumoniae liver abscess (KPLA) being the most prevalent in Asia. This study aims to develop an effective and comprehensive nomogram combining clinical and radiomics features for early prediction of KPLA.

METHODS

255 patients with PLA from 2013 to 2023 were enrolled and randomly divided into the training and validation cohorts at a 7:3 ratio. The differences between the two cohorts of patients were assessed univariate analysis. The radiomics features were extracted from imaging data from enhanced CT of liver abscesses. The optimal radiomics features were filtered using the independent sample t-test and least absolute shrinkage and selection operator, and a radiomics score (Rad-score) was calculated by weighting their respective coefficients. Clinically independent predictors were identified from the clinical data and combined with the Rad-score to develop a nomogram by multivariate logistic regression. The predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC), calibration curve, and clinical decision curve.

RESULTS

The nomogram incorporated four clinical features of diabetes mellitus, cryptogenic liver abscess, C-reactive protein level, and splenomegaly, and the Rad-score that was constructed based on seven optimal radiomics features. It had an AUC of 0.929 (95% CI, 0.894-0.964) and 0.923 (95% CI, 0.864-0.981) in the training and validation cohorts, respectively. The calibration and decision curves showed that the nomogram had good agreement and clinical applicability.

CONCLUSIONS

The clinical-radiomics nomogram performed well in predicting KPLA, hopefully serving as a reference for early diagnosis of KPLA.

摘要

背景与目的

化脓性肝脓肿(PLA)是一种具有毁灭性且可能危及生命的疾病,在全球范围内普遍存在,其中肺炎克雷伯菌肝脓肿(KPLA)在亚洲最为常见。本研究旨在开发一种结合临床和放射组学特征的有效且全面的列线图,以早期预测 KPLA。

方法

纳入了 2013 年至 2023 年期间的 255 例 PLA 患者,按照 7:3 的比例随机分为训练队列和验证队列。对两组患者的差异进行了单因素分析。从肝脏脓肿增强 CT 的影像学数据中提取放射组学特征。使用独立样本 t 检验和最小绝对收缩和选择算子对放射组学特征进行筛选,并通过加权各自的系数计算放射组学评分(Rad-score)。从临床数据中确定独立的临床预测因素,并与 Rad-score 相结合,通过多变量逻辑回归建立列线图。使用接受者操作特征曲线(AUC)下面积、校准曲线和临床决策曲线评估预测性能。

结果

该列线图纳入了糖尿病、隐源性肝脓肿、C 反应蛋白水平和脾肿大四个临床特征,以及基于七个最优放射组学特征构建的 Rad-score。在训练队列和验证队列中,该列线图的 AUC 分别为 0.929(95%CI,0.894-0.964)和 0.923(95%CI,0.864-0.981)。校准和决策曲线表明,该列线图具有良好的一致性和临床适用性。

结论

临床-放射组学列线图在预测 KPLA 方面表现良好,有望为 KPLA 的早期诊断提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af75/11485847/1699747326a6/IANN_A_2413923_F0001_B.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验