Salman Ahmed, Bolinches-Amorós Arantxa, Storm Tina, Moralli Daniela, Bryika Paulina, Russell Angela J, Davies Stephen G, Barnard Alun R, MacLaren Robert E
Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.
Welcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK.
J Cell Physiol. 2025 Jan;240(1):e31482. doi: 10.1002/jcp.31482. Epub 2024 Nov 28.
Cell replacement therapies for ocular diseases characterised by photoreceptors degeneration are challenging due to poor primary cell survival in culture. A stable retinal cell source to replace lost photoreceptors holds promise. Müller glia cells play a pivotal role in retinal homoeostasis by providing metabolic and structural support to retinal neurons, preventing aberrant photoreceptors migration, and facilitating safe glutamate uptake. In fish and amphibians, injured retinas regenerate due to Müller-like glial stem cells, a phenomenon absent in the mammalian retina for unknown reasons. Research on Müller cells has been complex due to difficulties in obtaining pure cell population and their rapid de-differentiation in culture. While various Müller glia cell lines from human and rats are described, no nonhuman primate Müller glia cell line is currently available. Here, we report spontaneously immortalised Müller glia cell lines derived from macaque neural retinas that respond to growth factors and expand indefinitely in culture. They exhibit Müller cells morphology, such as an elongated shape and cytoplasmic projections, express Müller glia markers (VIMENTIN, GLUTAMINE SYNTHASE, glutamate-aspartate transporter, and CD44), and express stem cell markers such as PAX6 and SOX2. In the presence of factors that induce photoreceptor differentiation, these cells show a shift in gene expression patterns suggesting a state of de-differentiation, a phenomenon known in reprogrammed mammalian Müller cells. The concept of self-renewing retina might seem unfeasible, but not unprecedented. While vertebrate Müller glia have a regeneration potential absent in mammals, understanding the mechanisms behind reprogramming of Müller glia in mammals could unlock their potential for treating retinal degenerative diseases.
对于以光感受器退化为特征的眼部疾病,细胞替代疗法颇具挑战性,因为原代细胞在培养中的存活率较低。一个稳定的视网膜细胞来源对于替代丢失的光感受器很有前景。穆勒胶质细胞通过为视网膜神经元提供代谢和结构支持、防止光感受器异常迁移以及促进安全摄取谷氨酸,在视网膜稳态中发挥关键作用。在鱼类和两栖动物中,受损的视网膜会因类似穆勒的胶质干细胞而再生,而哺乳动物视网膜中却不知为何不存在这种现象。由于难以获得纯净的细胞群体以及它们在培养中迅速去分化,对穆勒细胞的研究一直很复杂。虽然已经描述了多种来自人类和大鼠的穆勒胶质细胞系,但目前尚无非人灵长类穆勒胶质细胞系。在此,我们报告了从猕猴神经视网膜中自发永生化的穆勒胶质细胞系,这些细胞对生长因子有反应并在培养中无限增殖。它们呈现出穆勒细胞的形态,如细长的形状和细胞质突起,表达穆勒胶质细胞标志物(波形蛋白、谷氨酰胺合成酶、谷氨酸 - 天冬氨酸转运体和CD44),并表达干细胞标志物如PAX6和SOX2。在诱导光感受器分化的因子存在下,这些细胞显示出基因表达模式的转变,表明存在去分化状态,这是在重编程的哺乳动物穆勒细胞中已知的现象。自我更新视网膜的概念可能看似不可行,但并非前所未闻。虽然脊椎动物的穆勒胶质细胞具有哺乳动物所没有的再生潜力,但了解哺乳动物穆勒胶质细胞重编程背后的机制可能会开启其治疗视网膜退行性疾病的潜力。