Fouke Kaitlyn E, He Zichen, Loring Matthew D, Naumann Eva A
bioRxiv. 2024 Nov 23:2024.11.22.624938. doi: 10.1101/2024.11.22.624938.
Many animals respond to sensory cues with species-specific coordinated movements to successfully navigate their environment. However, the neural mechanisms that support diverse sensorimotor transformations across species with distinct navigational strategies remain largely unexplored. By comparing related teleost species, zebrafish ( ) and ( ), we investigated behavioral patterns and neural architectures during the visually guided optomotor response (OMR). Closed-loop behavioral tracking during visual stimulation revealed that larval employ burst-and-glide locomotion, while larval display continuous, smooth swimming punctuated with sharp directional turns. Although achieve higher average speeds, they lack the direction-dependent velocity modulation observed in . Whole-brain two-photon calcium imaging and tail tracking in head-fixed fish reveals that both species exhibit direction-selective motion encoding in homologous regions, including the retinorecipient pretectum, with exhibiting fewer binocular, direction-selective neurons overall. Kinematic analysis of head-fixed behavior reveals that sustain significantly longer directed swim events across all stimuli than , highlighting the divergent visuomotor strategies, with reducing tail movement duration in response to oblique, turn-inducing stimuli. Lateralized motor-associated neural activity in the medial and anterior hindbrain of both species suggests a shared circuit motif, with distinct neural circuits that independently control movement vigor and direction. These findings highlight the diversity in visuomotor strategies among teleost species, underscored by shared sensorimotor neural circuit motifs, and establish a robust framework for unraveling the neural mechanisms driving continuous and discrete visually guided locomotion, paving the way for deeper insights into vertebrate sensorimotor functions.
exhibit faster swimming than , matching the direction of visual motion. execute OMR in smooth, curved swimming patterns, interspersed with sharp directional turns. and share similar visuomotor neural architecture, recruiting pretectal and hindbrain regions. and demonstrate lateralized encoding of turns, particularly in medial hindbrain neurons.
Larval respond to global visual motion cues in smooth, low-angle swimming patterns, interspersed with sharp directional turns, swimming consistently faster than zebrafish. Fouke et al. use behavioral tracking of freely moving and head fixed fish to reveal an evolutionarily conserved visuomotor neural architecture transforming visual motion cues into species-specific locomotor behaviors.
许多动物会通过特定物种的协调运动对感官线索做出反应,以成功地在其环境中导航。然而,支持具有不同导航策略的物种间多样的感觉运动转换的神经机制在很大程度上仍未得到探索。通过比较相关的硬骨鱼物种,斑马鱼( )和 ( ),我们研究了视觉引导的视动反应(OMR)过程中的行为模式和神经结构。视觉刺激期间的闭环行为跟踪显示,幼体 采用爆发式滑行运动,而幼体 则表现为连续、平稳的游泳,并伴有急剧的方向转弯。尽管 达到了更高的平均速度,但它们缺乏在 中观察到的方向依赖性速度调制。对固定头部的鱼进行全脑双光子钙成像和尾巴跟踪发现,这两个物种在包括视网膜接受性顶盖前区在内的同源区域都表现出方向选择性运动编码,总体而言, 的双眼方向选择性神经元较少。对固定头部行为的运动学分析表明,在所有刺激下, 维持定向游泳事件的时间明显长于 ,突出了不同的视觉运动策略, 会在应对倾斜的、诱导转弯的刺激时缩短尾巴运动持续时间。这两个物种中脑内侧和前脑内侧与运动相关的神经活动的偏侧化表明存在一个共同的神经回路基序,以及独立控制运动活力和方向的不同神经回路。这些发现突出了硬骨鱼物种间视觉运动策略的多样性,共同的感觉运动神经回路基序强调了这一点,并建立了一个强大的框架来揭示驱动连续和离散视觉引导运动的神经机制,为更深入了解脊椎动物的感觉运动功能铺平了道路。
比 游得更快,与视觉运动方向匹配。 以平滑、弯曲的游泳模式执行视动反应,其间穿插着急剧的方向转弯。 和 共享相似的视觉运动神经结构,会募集顶盖前区和后脑区域。 和 表现出转弯的偏侧化编码,特别是在中脑内侧神经元中。
幼体 以平滑、低角度的游泳模式对全局视觉运动线索做出反应,其间穿插着急剧的方向转弯,游泳速度始终比斑马鱼快。福克等人通过对自由游动和固定头部的鱼进行行为跟踪,揭示了一种进化上保守的视觉运动神经结构,该结构将视觉运动线索转化为特定物种的运动行为。