Suppr超能文献

利用深度学习从基因表达预测泛癌药物敏感性

Pan-Cancer Drug Sensitivity Prediction from Gene Expression using Deep Learning.

作者信息

Ocasio Beronica A, Hu Jiaming, Stathias Vasileios, Martinez Maria J, Burnstein Kerry L, Schürer Stephan C

机构信息

Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.

Sylvester Comprehensive Cancer Center, University of Miami.

出版信息

bioRxiv. 2024 Nov 15:2024.11.15.623715. doi: 10.1101/2024.11.15.623715.

Abstract

Cancer is a group of complex diseases, with tumor heterogeneity, durable drug efficacy, emerging resistance, and host toxicity presenting major challenges to the development of effective cancer therapeutics. While traditionally used methods have remained limited in their capacity to overcome these challenges in cancer drug development, efforts have been made in recent years toward applying "big data" to cancer research and precision oncology. By curating, standardizing, and integrating data from various databases, we developed deep learning architectures that use perturbation and baseline transcriptional signatures to predict efficacious small molecule compounds and genetic dependencies in cancer. A series of internal validations followed by prospective validation in prostate cancer cell lines were performed to ensure consistent performance and model applicability. We report , a novel bioinformatics tool for prioritizing small molecule compounds and gene dependencies to drive the development of targeted therapies for cancer. To the best of our knowledge, this is the first supervised deep learning approach, validated , to predict drug sensitivity using baseline cancer cell line gene expression alongside cell line-independent perturbation-response consensus signatures.

摘要

癌症是一组复杂的疾病,肿瘤异质性、持久的药物疗效、新出现的耐药性以及宿主毒性对有效癌症治疗方法的开发构成了重大挑战。虽然传统使用的方法在克服癌症药物开发中的这些挑战方面能力仍然有限,但近年来人们已努力将“大数据”应用于癌症研究和精准肿瘤学。通过整理、标准化和整合来自各种数据库的数据,我们开发了深度学习架构,其利用扰动和基线转录特征来预测癌症中有效的小分子化合物和基因依赖性。随后在前列腺癌细胞系中进行了一系列内部验证,然后进行前瞻性验证,以确保性能一致和模型适用性。我们报告了一种新型生物信息学工具,用于对小分子化合物和基因依赖性进行优先级排序,以推动癌症靶向治疗的开发。据我们所知,这是第一种经过验证的监督深度学习方法,它利用基线癌细胞系基因表达以及与细胞系无关的扰动-反应共识特征来预测药物敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1b2/11601385/b5f0410a7cb2/nihpp-2024.11.15.623715v1-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验