Benstead-Hume Graeme, Wooller Sarah K, Renaut Joanna, Dias Samantha, Woodbine Lisa, Carr Antony M, Pearl Frances M G
Bioinformatics Lab, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK.
Bioinform Adv. 2022 Nov 10;2(1):vbac084. doi: 10.1093/bioadv/vbac084. eCollection 2022.
Protein-protein interaction (PPI) networks have been shown to successfully predict essential proteins. However, such networks are derived generically from experiments on many thousands of different cells. Consequently, conventional PPI networks cannot capture the variation of genetic dependencies that exists across different cell types, let alone those that emerge as a result of the massive cell restructuring that occurs during carcinogenesis. Predicting cell-specific dependencies is of considerable therapeutic benefit, facilitating the use of drugs to inhibit those proteins on which the cancer cells have become specifically dependent. In order to go beyond the limitations of the generic PPI, we have attempted to personalise PPI networks to reflect cell-specific patterns of gene expression and mutation. By using 12 topological features of the resulting PPIs, together with matched gene dependency data from DepMap, we trained random-forest classifiers (DependANT) to predict novel gene dependencies.
We found that DependANT improves the power of the baseline generic PPI models in predicting common gene dependencies, by up to 10.8% and is more sensitive than the baseline generic model when predicting genes on which only a small number of cell types are dependent.
Software available at https://bitbucket.org/bioinformatics_lab_sussex/dependant2.
Supplementary data are available at online.
蛋白质-蛋白质相互作用(PPI)网络已被证明能够成功预测必需蛋白质。然而,此类网络通常源自对数千种不同细胞的实验。因此,传统的PPI网络无法捕捉不同细胞类型间存在的基因依赖性差异,更不用说那些在致癌过程中因大量细胞重组而出现的差异了。预测细胞特异性依赖性具有相当大的治疗益处,有助于使用药物抑制癌细胞特别依赖的那些蛋白质。为了突破通用PPI的局限性,我们试图使PPI网络个性化,以反映基因表达和突变的细胞特异性模式。通过使用所得PPI的12个拓扑特征,以及来自DepMap的匹配基因依赖性数据,我们训练了随机森林分类器(DependANT)来预测新的基因依赖性。
我们发现DependANT在预测常见基因依赖性方面提高了基线通用PPI模型的能力,提高幅度高达10.8%,并且在预测仅少数细胞类型依赖的基因时比基线通用模型更敏感。
软件可在https://bitbucket.org/bioinformatics_lab_sussex/dependant2获取。
补充数据可在网上获取。