Beagle Sarah, Levin Petra Anne
bioRxiv. 2025 Apr 15:2025.03.12.642896. doi: 10.1101/2025.03.12.642896.
is a leading cause of global deaths due to antibiotic resistance. Of particular concern is the rapid expansion of resistance to beta-lactam antibiotics within lineages. The environmental factors that influence pathogen physiology and, subsequently, antibiotic resistance remain poorly understood. Here we demonstrate that physiologically-relevant reductions in pH increased beta-lactam resistance as much as 64-fold, with the most dramatic increase observed for beta-lactams that specifically inhibit cell division. We identified two genes that contribute to acid-dependent beta-lactam resistance, the class A PBP, PBP1b, and the paralogous class B PBP, PBP3 . Loss of either PBP1b or PBP3 increases susceptibility to beta-lactams at low pH. Altogether these data emphasize the importance of functional redundancy among cell wall synthesis enzymes which allows for specialization and ensures robust cell wall synthesis across a range of environmental conditions.
Beta-lactams are the most prescribed class of antibiotics, but their effectiveness is threatened by a global rise in antimicrobial resistance. How the environment within a host or infection site shapes pathogen response to antibiotics is frequently overlooked in assessments of antibiotic effectiveness. We demonstrate that growth at physiologically-relevant low pH substantially increases resistance to clinically important beta-lactams. An important finding of this study is that during growth in acidic pH has a different repertoire of cell wall synthesis genes available than during growth at neutral pH due to the presence of acid-inducible paralogous copies of essential cell wall synthesis enzymes, PBP2 and PBP3. An additional functionally-redundant enzyme, PBP1b, also contributes to acid-dependent beta-lactam resistance. Together, these findings expand our understanding of how bacteria maintain cell wall synthesis across diverse physiochemical environments and highlight potential new therapeutic targets.
由于抗生素耐药性,是全球死亡的主要原因。特别令人担忧的是,β-内酰胺类抗生素耐药性在菌系中的迅速扩展。影响病原体生理进而影响抗生素耐药性的环境因素仍知之甚少。在此,我们证明生理相关的pH降低可使β-内酰胺耐药性增加多达64倍,对于特异性抑制细胞分裂的β-内酰胺类药物,观察到的增加最为显著。我们鉴定出两个导致酸依赖性β-内酰胺耐药性的基因,A类青霉素结合蛋白PBP1b和同源的B类青霉素结合蛋白PBP3。PBP1b或PBP3的缺失会增加低pH条件下对β-内酰胺类药物的敏感性。总之,这些数据强调了细胞壁合成酶之间功能冗余的重要性,这种冗余允许专业化并确保在一系列环境条件下进行稳健的细胞壁合成。
β-内酰胺类是处方最多的抗生素类别,但其有效性受到全球抗菌药物耐药性上升的威胁。在评估抗生素有效性时,宿主或感染部位内的环境如何塑造病原体对抗生素的反应常常被忽视。我们证明在生理相关的低pH条件下生长会大幅增加对临床上重要的β-内酰胺类药物的耐药性。这项研究的一个重要发现是,在酸性pH条件下生长时,由于存在必需细胞壁合成酶PBP2和PBP3的酸诱导同源拷贝,与在中性pH条件下生长相比,可用的细胞壁合成基因库不同。另一种功能冗余的酶PBP1b也有助于酸依赖性β-内酰胺耐药性。这些发现共同扩展了我们对细菌如何在不同物理化学环境中维持细胞壁合成的理解,并突出了潜在的新治疗靶点。