文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

驱动力的丧失会损害肌腱的结构和功能。

Loss of drives impairments in tendon structure and function.

作者信息

Adjei-Sowah Emmanuela, Lecaj Elsa, Adhikari Neeta, Sensini Clara, Nichols Anne E C, Buckley Mark R, Loiselle Alayna E

机构信息

Department of Biomedical Engineering, University of Rochester; Rochester, NY 14623, USA.

Center for Musculoskeletal Research, University of Rochester Medical Center; Rochester, NY 14642, USA.

出版信息

bioRxiv. 2024 Nov 14:2024.11.14.623674. doi: 10.1101/2024.11.14.623674.


DOI:10.1101/2024.11.14.623674
PMID:39605598
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11601365/
Abstract

Aging tendons undergo disruptions in homeostasis, increased susceptibility to injury, and reduced capacity for healing. Exploring the mechanisms behind this disruption in homeostasis is essential for developing therapeutics aimed at maintaining tendon health through the lifespan. We have previously identified that the extracellular matrix protein, , which is highly expressed in healthy flexor tendon, is consistently lost during both natural aging and upon depletion of Scleraxis-lineage cells in young animals, which recapitulates many aging-associated homeostatic disruptions. Therefore, we hypothesized that loss of Cochlin would disrupt tendon homeostasis, including alterations in collagen fibril organization, and impaired tendon mechanics. By 3-months of age, flexor tendons exhibited altered collagen structure, with these changes persisting through at least 9-months. In addition, Cochlin tendons demonstrated significant declines in structural and material properties at 6-months, and structural properties at 9-months. While did not drastically change the overall tendon proteome, consistent decreases in proteins associated with RNA metabolism, extracellular matrix production and the cytoskeleton were observed in . Interestingly, homeostatic disruption via did not impair the tendon healing process. Taken together, these data define a critical role for in maintaining tendon homeostasis and suggest retention or restoration of as a potential therapeutic approach to retain tendon structure and function through the lifespan.

摘要

衰老的肌腱会出现内环境稳态破坏、受伤易感性增加以及愈合能力下降的情况。探究这种内环境稳态破坏背后的机制对于开发旨在在整个生命周期维持肌腱健康的治疗方法至关重要。我们之前已经确定,细胞外基质蛋白,在健康的屈肌腱中高度表达,在自然衰老过程以及幼年动物中硬骨素谱系细胞耗竭时会持续丢失,这概括了许多与衰老相关的内环境稳态破坏。因此,我们假设耳蜗素的缺失会破坏肌腱内环境稳态,包括胶原纤维组织的改变以及肌腱力学受损。到3个月大时,屈肌腱表现出胶原结构改变,这些变化至少持续到9个月。此外,耳蜗素缺陷的肌腱在6个月时结构和材料特性显著下降,在9个月时结构特性下降。虽然耳蜗素并没有大幅改变整体肌腱蛋白质组,但在耳蜗素缺陷的肌腱中观察到与RNA代谢、细胞外基质产生和细胞骨架相关的蛋白质持续减少。有趣的是,通过耳蜗素缺失造成的内环境稳态破坏并没有损害肌腱愈合过程。综上所述,这些数据确定了耳蜗素在维持肌腱内环境稳态中的关键作用,并表明保留或恢复耳蜗素作为一种潜在的治疗方法,以在整个生命周期维持肌腱结构和功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/dc9f41ac31e6/nihpp-2024.11.14.623674v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/3451995ffcb4/nihpp-2024.11.14.623674v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/c6119e190333/nihpp-2024.11.14.623674v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/eb1735b26599/nihpp-2024.11.14.623674v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/87d3c30d9dd2/nihpp-2024.11.14.623674v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/dc9f41ac31e6/nihpp-2024.11.14.623674v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/3451995ffcb4/nihpp-2024.11.14.623674v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/c6119e190333/nihpp-2024.11.14.623674v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/eb1735b26599/nihpp-2024.11.14.623674v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/87d3c30d9dd2/nihpp-2024.11.14.623674v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a2/11601365/dc9f41ac31e6/nihpp-2024.11.14.623674v1-f0005.jpg

相似文献

[1]
Loss of drives impairments in tendon structure and function.

bioRxiv. 2024-11-14

[2]
Loss of drives impairments in tendon structure and function.

Matrix Biol Plus. 2025-2-15

[3]
Scleraxis-lineage cells are required for tendon homeostasis and their depletion induces an accelerated extracellular matrix aging phenotype.

Elife. 2023-1-19

[4]
Aging does not alter tendon mechanical properties during homeostasis, but does impair flexor tendon healing.

J Orthop Res. 2017-12

[5]
Age-related changes of tendon fibril micro-morphology and gene expression.

J Anat. 2020-4

[6]
Scleraxis-lineage cell depletion improves tendon healing and disrupts adult tendon homeostasis.

Elife. 2021-1-22

[7]
Collagen XI regulates the acquisition of collagen fibril structure, organization and functional properties in tendon.

Matrix Biol. 2020-12

[8]
Impact of aging on tendon homeostasis, tendinopathy development, and impaired healing.

Connect Tissue Res. 2023-1

[9]
Depletion of Scleraxis-lineage cells during tendon healing transiently impairs multi-scale restoration of tendon structure during early healing.

PLoS One. 2022

[10]
Decorin expression is important for age-related changes in tendon structure and mechanical properties.

Matrix Biol. 2012-11-23

本文引用的文献

[1]
Development of a nanoparticle-based tendon-targeting drug delivery system to pharmacologically modulate tendon healing.

Sci Adv. 2024-6-21

[2]
Multiscale and multidisciplinary analysis of aging processes in bone.

NPJ Aging. 2024-6-15

[3]
Aged Tendons Exhibit Altered Mechanisms of Strain-Dependent Extracellular Matrix Remodeling.

J Biomech Eng. 2024-7-1

[4]
Identification of Periostin as a critical niche for myofibroblast dynamics and fibrosis during tendon healing.

Matrix Biol. 2024-1

[5]
Effect of Aging on Tendon Biology, Biomechanics and Implications for Treatment Approaches.

Int J Mol Sci. 2023-10-14

[6]
Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets.

Signal Transduct Target Ther. 2023-7-31

[7]
Development of cochlear spiral ligament fibrocytes of the common marmoset, a nonhuman model animal.

Sci Rep. 2023-7-21

[8]
Scleraxis-lineage cells are required for tendon homeostasis and their depletion induces an accelerated extracellular matrix aging phenotype.

Elife. 2023-1-19

[9]
Defining the spatial-molecular map of fibrotic tendon healing and the drivers of Scleraxis-lineage cell fate and function.

Cell Rep. 2022-11-22

[10]
Impact of aging on tendon homeostasis, tendinopathy development, and impaired healing.

Connect Tissue Res. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索