Suppr超能文献

使用多电极阵列对人诱导多能干细胞衍生的感觉神经元进行镇痛药物筛选分析

Profiling Human iPSC-Derived Sensory Neurons for Analgesic Drug Screening Using a Multi-Electrode Array.

作者信息

Kuete Christian Fofie, Granja-Vazquez Rafael, Truong Vincent, Walsh Patrick, Price Theodore, Biswas Swati, Dussor Gregory, Pancrazio Joseph, Kolber Benedict

出版信息

bioRxiv. 2024 Nov 18:2024.11.18.623405. doi: 10.1101/2024.11.18.623405.

Abstract

UNLABELLED

Chronic pain is a major global health issue, yet effective treatments are limited by poor translation from preclinical studies to humans. To address this, we developed a high-content screening (HCS) platform for analgesic discovery using hiPSC-derived nociceptors. These cells were cultured on multi-well micro-electrode arrays to monitor activity, achieving nearly 100% active electrodes by week two, maintaining stable activity for at least two weeks. After maturation (28 days), we exposed the nociceptors to various drugs, assessing their effects on neuronal activity, with excellent assay performance (Z' values >0.5). Pharmacological tests showed responses to analgesic targets, including ion channels (Nav, Cav, Kv, TRPV1), neurotransmitter receptors (AMPAR, GABA-R), and kinase inhibitors (tyrosine, JAK1/2). Transcriptomic analysis confirmed the presence of these drug targets, although expression levels varied compared to primary human dorsal root ganglion cells. This HCS platform facilitates the rapid discovery of novel analgesics, reducing the risk of preclinical-to-human translation failure.

MOTIVATION

Chronic pain affects approximately 1.5 billion people worldwide, yet effective treatments remain elusive. A significant barrier to progress in analgesic drug discovery is the limited translation of preclinical findings to human clinical outcomes. Traditional rodent models, although widely used, often fail to accurately predict human responses, while human primary tissues are limited by scarcity, technical difficulties, and ethical concerns. Recent advancements have identified human induced pluripotent stem cell (hiPSC)-derived nociceptors as promising alternatives; however, current differentiation protocols produce cells with inconsistent and physiologically questionable phenotypes.To address these challenges, our study introduces a novel high-content screening (HCS) platform using hiPSC-derived nociceptors cultured on multi-well micro-electrode arrays (MEAs). The "Anatomic" protocol, used to generate these nociceptors, ensures cells with transcriptomic profiles closely matching human primary sensory neurons. Our platform achieves nearly 100% active electrode yield within two weeks and demonstrates sustained, stable activity over time. Additionally, robust Z' factor analysis (exceeding 0.5) confirms the platform's reliability, while pharmacological validation establishes the functional expression of critical analgesic targets. This innovative approach improves both the efficiency and clinical relevance of analgesic drug screening, potentially bridging the translational gap between preclinical studies and human clinical trials, and offering new hope for effective pain management.

摘要

未标记

慢性疼痛是一个重大的全球健康问题,但有效的治疗方法因临床前研究向人体的转化效果不佳而受到限制。为了解决这一问题,我们开发了一种用于镇痛药物发现的高内涵筛选(HCS)平台,该平台使用人诱导多能干细胞(hiPSC)衍生的伤害感受器。这些细胞在多孔微电极阵列上培养以监测活性,在第二周时活性电极达到近100%,并保持至少两周的稳定活性。成熟(28天)后,我们将伤害感受器暴露于各种药物,评估它们对神经元活性的影响,检测性能良好(Z'值>0.5)。药理学测试显示对镇痛靶点有反应,包括离子通道(Nav、Cav、Kv、TRPV1)、神经递质受体(AMPAR、GABA-R)和激酶抑制剂(酪氨酸、JAK1/2)。转录组分析证实了这些药物靶点的存在,尽管与原代人背根神经节细胞相比表达水平有所不同。这个HCS平台有助于快速发现新型镇痛药,降低临床前向人体转化失败的风险。

动机

慢性疼痛影响着全球约15亿人,但有效的治疗方法仍然难以捉摸。镇痛药发现进展的一个重大障碍是临床前研究结果向人体临床结果的转化有限。传统的啮齿动物模型虽然广泛使用,但往往无法准确预测人体反应,而人体原代组织则受到稀缺性、技术困难和伦理问题的限制。最近的进展已将hiPSC衍生的伤害感受器确定为有前途的替代物;然而,目前的分化方案产生的细胞具有不一致且生理上有问题的表型。为了应对这些挑战,我们的研究引入了一种新型的高内涵筛选(HCS)平台,该平台使用在多孔微电极阵列(MEA)上培养的hiPSC衍生的伤害感受器。用于生成这些伤害感受器的“解剖学”方案可确保细胞的转录组谱与人体原代感觉神经元密切匹配。我们的平台在两周内实现了近100%的活性电极产量,并随着时间的推移显示出持续、稳定的活性。此外,强大的Z'因子分析(超过0.5)证实了该平台的可靠性,而药理学验证确定了关键镇痛靶点的功能性表达。这种创新方法提高了镇痛药筛选的效率和临床相关性,有可能弥合临床前研究与人体临床试验之间的转化差距,并为有效的疼痛管理带来新希望。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验