Kang Joonsuk M, Shaw Tiffany A, Sun Lantao
Department of the Geophysical Sciences The University of Chicago Chicago IL USA.
Department of Atmospheric Sciences Colorado State University Fort Collins CO USA.
AGU Adv. 2024 Dec;5(6):e2024AV001318. doi: 10.1029/2024AV001318. Epub 2024 Nov 21.
Reanalysis data show a significant weakening of summertime circulation in the Northern Hemisphere (NH) midlatitudes in the satellite era with implications for surface weather extremes. Recent work showed the weakening is not significantly affected by changes in the Arctic, but did not examine the role of different anthropogenic forcings such as aerosols. Here we use the Detection and Attribution Model Intercomparison Project (DAMIP) simulations to quantify the impact of anthropogenic aerosol and greenhouse gas forcing. The DAMIP simulations show aerosols and greenhouse gases contribute equally to zonal-mean circulation weakening. Regionally, aerosol dominates the Pacific storm track weakening whereas greenhouse gas dominates in the Atlantic. Using a regional energetic framework, we show why the impact of aerosol is the largest in the Pacific. Reduced sulfate aerosol emissions over Eurasia and North America increase (clear-sky) surface shortwave radiation and turbulent fluxes. This enhances land-to-ocean energy contrast and energy transport via stationary circulations to the ocean. Consequently, energy converges poleward of oceanic storm tracks, demanding weaker poleward energy transport storm tracks, and the storm tracks weaken. The impact is larger over the Pacific following the larger emission decrease over Eurasia than North America. Similar yet opposite, increased aerosol emissions over South and East Asia decrease shortwave radiation and weaken land-to-ocean energy transport. This diverges energy equatorward of the Pacific storm track, further weakening it. Our results show aerosols are a dominant driver of regional circulation weakening during the NH summertime in the satellite era and a regional energetic framework explaining the underlying processes.
再分析数据显示,在卫星时代,北半球中纬度地区夏季环流显著减弱,这对极端地面天气有影响。最近的研究表明,这种减弱不受北极变化的显著影响,但未考察气溶胶等不同人为强迫因素的作用。在此,我们使用检测与归因模型比较计划(DAMIP)的模拟来量化人为气溶胶和温室气体强迫的影响。DAMIP模拟表明,气溶胶和温室气体对纬向平均环流减弱的贡献相当。在区域上,气溶胶主导了太平洋风暴路径的减弱,而温室气体在大西洋占主导。使用区域能量框架,我们展示了为什么气溶胶在太平洋的影响最大。欧亚大陆和北美的硫酸盐气溶胶排放减少,增加了(晴空)地表短波辐射和湍流通量。这增强了陆地到海洋的能量对比以及通过定常环流到海洋的能量输送。因此,能量在海洋风暴路径的极地一侧汇聚,要求向极地的能量输送通过风暴路径减弱,风暴路径随之减弱。由于欧亚大陆的排放减少幅度大于北美,所以在太平洋上的影响更大。类似但相反的是,南亚和东亚的气溶胶排放增加,减少了短波辐射并削弱了陆地到海洋的能量输送。这使能量在太平洋风暴路径的赤道一侧发散,进一步削弱了它。我们的结果表明,气溶胶是卫星时代北半球夏季区域环流减弱的主要驱动因素,并提供了一个解释潜在过程的区域能量框架。