Suppr超能文献

将地球系统模型趋势与观测结果进行对比。

Confronting Earth System Model trends with observations.

作者信息

Simpson Isla R, Shaw Tiffany A, Ceppi Paulo, Clement Amy C, Fischer Erich, Grise Kevin M, Pendergrass Angeline G, Screen James A, Wills Robert C J, Woollings Tim, Blackport Russell, Kang Joonsuk M, Po-Chedley Stephen

机构信息

National Science Foundation National Center for Atmospheric Research, Boulder, CO, USA.

The University of Chicago, Chicago, IL, USA.

出版信息

Sci Adv. 2025 Mar 14;11(11):eadt8035. doi: 10.1126/sciadv.adt8035. Epub 2025 Mar 12.

Abstract

Anthropogenically forced climate change signals are emerging from the noise of internal variability in observations, and the impacts on society are growing. For decades, Climate or Earth System Models have been predicting how these climate change signals will unfold. While challenges remain, given the growing forced trends and the lengthening observational record, the climate science community is now in a position to confront the signals, as represented by historical trends, in models with observations. This review covers the state of the science on the ability of models to represent historical trends in the climate system. It also outlines robust procedures that should be used when comparing modeled and observed trends and how to move beyond quantification into understanding. Finally, this review discusses cutting-edge methods for identifying sources of discrepancies and the importance of future confrontations.

摘要

人为强迫的气候变化信号正从观测数据的内部变率噪声中显现出来,且对社会的影响正在加剧。数十年来,气候或地球系统模型一直在预测这些气候变化信号将如何发展。尽管挑战依然存在,但鉴于强迫趋势不断增强以及观测记录不断延长,气候科学界现在有能力将模型中以历史趋势表示的信号与观测结果进行对比。本综述涵盖了关于模型表征气候系统历史趋势能力的科学现状。它还概述了在比较模型趋势和观测趋势时应采用的稳健程序,以及如何从量化转向理解。最后,本综述讨论了识别差异来源的前沿方法以及未来对比的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验