Zhu Ziyu, Wang Cong, Shi Lei, Li Mengya, Li Jiaqi, Liang Shiyin, Yin Zhidong, Xue Yingwei
Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China.
Department of Oncology, Beidahuang Industry Group General Hospital, Harbin, People's Republic of China.
J Inflamm Res. 2024 Nov 23;17:9551-9566. doi: 10.2147/JIR.S488676. eCollection 2024.
The prediction of lymph node metastasis in gastric cancer, a pivotal determinant affecting treatment approaches and prognosis, continues to pose a significant challenge in terms of accuracy.
In this study, we employed a combination of machine learning methods and the SHapley Additive exPlanations (SHAP) framework to develop an integrated predictive model. This model utilizes the preoperatively obtainable parameter of the inflammatory index, aiming to enhance the accuracy of predicting lymph node metastasis in gastric cancer patients.
Lymph node metastasis stands as an independent prognostic risk factor for gastric cancer patients. Among various models, XGBoost emerges as the optimal machine learning model. In the training set, the XGBoost model exhibited the highest AUC value of 0.705. In the test set, XGBoost demonstrated the highest AUC of 0.695, and the lowest Brier score of 0.218. Notably, in terms of feature importance, PLR emerged as the most significant factor influencing lymph node metastasis in gastric cancer patients. Through the screening of differentially expressed genes, we ultimately identified the prognostic value of six genes: IGFN1, CLEC11A, STC2, TFEC, MUC5AC, and ANOS1, in predicting survival.
The XGBoost model can predict lymph node metastasis (LNM) in gastric cancer patients based on the inflammation index and peripheral lymphocyte subgroups. Combined with SHAP, it provides a more intuitive reflection of the impact of different variables on LNM. PLR emerges as the most crucial risk factor for lymph node metastasis in the inflammation index among gastric cancer patients.
胃癌淋巴结转移的预测是影响治疗方法和预后的关键因素,在准确性方面仍然是一项重大挑战。
在本研究中,我们采用机器学习方法和SHapley加性解释(SHAP)框架相结合的方式来开发一个综合预测模型。该模型利用术前可获得的炎症指数参数,旨在提高胃癌患者淋巴结转移预测的准确性。
淋巴结转移是胃癌患者独立的预后危险因素。在各种模型中,XGBoost成为最优的机器学习模型。在训练集中,XGBoost模型的AUC值最高,为0.705。在测试集中,XGBoost的AUC最高,为0.695,Brier评分最低,为0.218。值得注意的是,在特征重要性方面,PLR是影响胃癌患者淋巴结转移的最重要因素。通过差异表达基因的筛选,我们最终确定了六个基因IGFN1、CLEC11A、STC2、TFEC、MUC5AC和ANOS1在预测生存方面的预后价值。
XGBoost模型可以基于炎症指数和外周淋巴细胞亚群预测胃癌患者的淋巴结转移(LNM)。结合SHAP,它能更直观地反映不同变量对LNM的影响。在胃癌患者的炎症指数中,PLR是淋巴结转移最关键的危险因素。