Suppr超能文献

整合机器学习与SHapley加性解释(SHAP)框架,基于炎症指标和外周血淋巴细胞亚群预测胃癌患者的淋巴结转移

Integrating Machine Learning and the SHapley Additive exPlanations (SHAP) Framework to Predict Lymph Node Metastasis in Gastric Cancer Patients Based on Inflammation Indices and Peripheral Lymphocyte Subpopulations.

作者信息

Zhu Ziyu, Wang Cong, Shi Lei, Li Mengya, Li Jiaqi, Liang Shiyin, Yin Zhidong, Xue Yingwei

机构信息

Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China.

Department of Oncology, Beidahuang Industry Group General Hospital, Harbin, People's Republic of China.

出版信息

J Inflamm Res. 2024 Nov 23;17:9551-9566. doi: 10.2147/JIR.S488676. eCollection 2024.

Abstract

BACKGROUND

The prediction of lymph node metastasis in gastric cancer, a pivotal determinant affecting treatment approaches and prognosis, continues to pose a significant challenge in terms of accuracy.

METHODS

In this study, we employed a combination of machine learning methods and the SHapley Additive exPlanations (SHAP) framework to develop an integrated predictive model. This model utilizes the preoperatively obtainable parameter of the inflammatory index, aiming to enhance the accuracy of predicting lymph node metastasis in gastric cancer patients.

RESULTS

Lymph node metastasis stands as an independent prognostic risk factor for gastric cancer patients. Among various models, XGBoost emerges as the optimal machine learning model. In the training set, the XGBoost model exhibited the highest AUC value of 0.705. In the test set, XGBoost demonstrated the highest AUC of 0.695, and the lowest Brier score of 0.218. Notably, in terms of feature importance, PLR emerged as the most significant factor influencing lymph node metastasis in gastric cancer patients. Through the screening of differentially expressed genes, we ultimately identified the prognostic value of six genes: IGFN1, CLEC11A, STC2, TFEC, MUC5AC, and ANOS1, in predicting survival.

CONCLUSION

The XGBoost model can predict lymph node metastasis (LNM) in gastric cancer patients based on the inflammation index and peripheral lymphocyte subgroups. Combined with SHAP, it provides a more intuitive reflection of the impact of different variables on LNM. PLR emerges as the most crucial risk factor for lymph node metastasis in the inflammation index among gastric cancer patients.

摘要

背景

胃癌淋巴结转移的预测是影响治疗方法和预后的关键因素,在准确性方面仍然是一项重大挑战。

方法

在本研究中,我们采用机器学习方法和SHapley加性解释(SHAP)框架相结合的方式来开发一个综合预测模型。该模型利用术前可获得的炎症指数参数,旨在提高胃癌患者淋巴结转移预测的准确性。

结果

淋巴结转移是胃癌患者独立的预后危险因素。在各种模型中,XGBoost成为最优的机器学习模型。在训练集中,XGBoost模型的AUC值最高,为0.705。在测试集中,XGBoost的AUC最高,为0.695,Brier评分最低,为0.218。值得注意的是,在特征重要性方面,PLR是影响胃癌患者淋巴结转移的最重要因素。通过差异表达基因的筛选,我们最终确定了六个基因IGFN1、CLEC11A、STC2、TFEC、MUC5AC和ANOS1在预测生存方面的预后价值。

结论

XGBoost模型可以基于炎症指数和外周淋巴细胞亚群预测胃癌患者的淋巴结转移(LNM)。结合SHAP,它能更直观地反映不同变量对LNM的影响。在胃癌患者的炎症指数中,PLR是淋巴结转移最关键的危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c670/11600934/68dd42495a40/JIR-17-9551-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验