Suppr超能文献

用于改善土壤健康和产量可持续性的土壤测试作物响应养分配方方程——印度南部淋溶土上的一项长期研究

Soil test crop response nutrient prescription equations for improving soil health and yield sustainability-a long-term study under Alfisols of southern India.

作者信息

Murthy R Krishna, Nagaraju Bhavya, Govinda K, Uday Kumar S N, Basavaraja P K, Saqeebulla H M, Gangamrutha G V, Srivastava Sanjay, Dey Pradip

机构信息

All India Coordinated Research Project on Soil Test Crop Response, University of Agricultural Sciences, Bangalore, India.

All India Coordinated Research Project on Soil Test Crop Response, Indian Council of Agricultural Research (ICAR)-Indian Institute of Soil Science, Bhopal, India.

出版信息

Front Plant Sci. 2024 Nov 13;15:1439523. doi: 10.3389/fpls.2024.1439523. eCollection 2024.

Abstract

INTRODUCTION

Enhancing soil health and nutrient levels through fertilizers boosts agricultural productivity and global food security. However, careful fertilizer use is essential to prevent environmental damage and improve crop yields. The soil test crop response (STCR) is a scientific approach to fertilizer recommendation that ensures efficient use, supporting higher crop production while protecting the environment and preserving resources.

METHODOLOGY

A long-term field experiment on the STCR approach was initiated in 2017 at the Zonal Agriculture Research Station, University of Agricultural Sciences, Bangalore, India. The experiment aimed to study the impact of STCR-based nutrient prescription along with farmyard manure (FYM) for a targeted yield of soybean (), sunflower (), dry chili (), aerobic rice ( L.), foxtail millet (), okra (), and kodo millet () on yield and changes in soil health in comparison with other approaches of fertilizer recommendation.

RESULTS

The results showed a significant and positive impact of the integrated use of fertilizer with FYM based on the STCR approach on the productivity of all the crops and soil fertility. Significantly higher yields of soybean (23.91 q ha), sunflower (27.13 q ha), dry chili (16.67 q ha), aerobic rice (65.46 q ha), foxtail millet (14.07 q ha), okra (26.82 t ha), and kodo millet (17.10 q ha) were observed in the STCR NPK + FYM approach at yield level 1 compared to the general recommended dose and soil fertility rating approach. This approach outperformed the standard recommendations, enhancing nutrient uptake and efficiency across various crops. Utilizing the principal component analysis, the soil quality index effectively reflected the impact of nutrient management on soil properties, with the STCR NPK + FYM treatment at yield level 1 showing the highest correlation with improved soil physical and chemical parameters.

DISCUSSION

The STCR approach led to improved yield, nutrient uptake, utilization efficiency, and soil health, thanks to a balanced fertilization strategy. This strategy was informed by soil tests and included factors like crop-induced nutrient depletion, baseline soil fertility, the efficiency of inherent and added nutrients through fertilizers and farmyard manure, and the success of yield-targeting techniques in meeting the nutritional needs of crops.

摘要

引言

通过肥料提高土壤健康和养分水平可提高农业生产力和全球粮食安全。然而,谨慎使用肥料对于防止环境破坏和提高作物产量至关重要。土壤测试作物响应(STCR)是一种科学的肥料推荐方法,可确保肥料的有效利用,在保护环境和节约资源的同时支持更高的作物产量。

方法

2017年在印度班加罗尔农业科学大学的区域农业研究站启动了一项关于STCR方法的长期田间试验。该试验旨在研究基于STCR的养分配方以及农家肥(FYM)对大豆()、向日葵()、干辣椒()、旱稻(L.)、谷子()、秋葵()和龙爪稷()目标产量的影响,并与其他肥料推荐方法相比,研究其对土壤健康变化的影响。

结果

结果表明,基于STCR方法将肥料与农家肥综合使用对所有作物的生产力和土壤肥力有显著的积极影响。与一般推荐剂量和土壤肥力评级方法相比,在产量水平1下,STCR氮磷钾+农家肥方法下观察到大豆(23.91公担/公顷)、向日葵(27.13公担/公顷)、干辣椒(16.67公担/公顷)、旱稻(65.46公担/公顷)、谷子(14.07公担/公顷)、秋葵(26.82吨/公顷)和龙爪稷(17.10公担/公顷)的产量显著更高。这种方法优于标准推荐方法,提高了各种作物的养分吸收和利用效率。利用主成分分析,土壤质量指数有效地反映了养分管理对土壤性质的影响,产量水平1下的STCR氮磷钾+农家肥处理与改善的土壤物理和化学参数显示出最高的相关性。

讨论

由于采用了平衡施肥策略,STCR方法提高了产量、养分吸收、利用效率和土壤健康。该策略以土壤测试为依据,包括作物引起的养分消耗、土壤基础肥力、通过肥料和农家肥的固有和添加养分的效率,以及产量目标技术满足作物营养需求的成功程度等因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6c8/11601127/81506c39427f/fpls-15-1439523-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验