Hsueh Chou-Hung, He Chang, Zhang Jiaqi, Tan Xin, Zhu Haojie, Cheong Weng-Chon Max, Li An-Zhen, Chen Xin, Duan Haohong, Zhao Yingbo, Chen Chen
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
Institute of Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
J Am Chem Soc. 2024 Dec 11;146(49):33857-33864. doi: 10.1021/jacs.4c12286. Epub 2024 Nov 28.
Developing precious metal-free catalysts for organic reactions under mild conditions is urgent. Herein, we report a three-dimensional covalent organic framework (3D-COF) with high crystallinity and permanent pores, termed 3D-TABPA-COF, for the oxidation of tetrahydroquinoline to quinoline. The 3D-TABPA-COF assembled based on ,-bis(4'-amino-[1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4,4'-diamine (TABPA) is the catalytic active center for the conversion of tetrahydroquinoline. The triphenylamine in the structure is an effective photosensitizer, which not only enhances the light absorption capacity but also facilitates the rapid transfer of photogenerated electrons and ensures effective carrier separation. The obtained 3D-TABPA-COF has a high specific surface area (2745.06 m g) and mesopores of 3.57 nm. This is attributed to the fact that the topology is not easy to interpenetrate. It can oxidize tetrahydroquinoline to obtain quinoline efficiently under visible light irradiation. In addition, we also performed various photochemical characterizations combined with density functional theory calculations to elucidate the reaction mechanism from tetrahydroquinoline to quinoline. This work provides a feasible strategy for constructing 3D-COF to achieve efficient photocatalytic organic reactions.
在温和条件下开发用于有机反应的无贵金属催化剂迫在眉睫。在此,我们报道了一种具有高结晶度和永久孔隙的三维共价有机框架(3D-COF),称为3D-TABPA-COF,用于将四氢喹啉氧化为喹啉。基于1,4-双(4'-氨基-[1,1'-联苯]-4-基)-[1,1'-联苯]-4,4'-二胺(TABPA)组装的3D-TABPA-COF是四氢喹啉转化的催化活性中心。结构中的三苯胺是一种有效的光敏剂,它不仅增强了光吸收能力,还促进了光生电子的快速转移并确保了有效的载流子分离。所获得的3D-TABPA-COF具有高比表面积(2745.06 m²/g)和3.57 nm的中孔。这归因于该拓扑结构不易相互贯穿这一事实。它可以在可见光照射下有效地将四氢喹啉氧化为喹啉。此外,我们还结合密度泛函理论计算进行了各种光化学表征,以阐明从四氢喹啉到喹啉的反应机理。这项工作为构建3D-COF以实现高效光催化有机反应提供了一种可行的策略。