Suppr超能文献

氮化硼量子点在铁氮位点处对过氧乙酸的活化增强电荷转移,生成用于抗生素降解的高价金属氧物种。

Activation of PAA at the Fe-N Sites by Boron Nitride Quantum Dots Enhanced Charge Transfer Generates High-Valent Metal-Oxo Species for Antibiotics Degradation.

作者信息

Li Shuo, Yang Yalun, Niu Junfeng, Zheng Heshan, Zhang Wen, Leong Yoong Kit, Chang Jo-Shu, Lai Bo

机构信息

College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China.

College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.

出版信息

Environ Sci Technol. 2024 Dec 10;58(49):21871-21881. doi: 10.1021/acs.est.4c08224. Epub 2024 Nov 28.

Abstract

Advanced oxidation processes (AOPs) based on peracetic acid (PAA) offer a promising strategy to address antibiotic wastewater pollution. In this study, Fe-doped graphitic carbon nitride (g-CN) nanomaterials were used to construct Fe-N sites, and the electronic structure was tuned by boron nitride quantum dots (BNQDs), thereby optimizing PAA activation for the degradation of antibiotics. The BNQDs-modified Fe-doped g-CN catalyst (BNQDs-FCN) achieved an excellent reaction rate constant of 0.0843 min, marking a 21.6-fold improvement over the carbon nitride (CN)-based PAA system. DFT calculations further corroborate the superior adsorption capacity of the Fe-N sites for PAA, facilitating its activation. Charge transfer mechanisms, with PAA serving as an electron acceptor, were identified as the source of high-valent iron-oxo species. Moreover, the BNQDs-FCN system preferentially targets oxygen-containing functional groups in antibiotic structures, elucidating the selective attack patterns of these highly electrophilic species. This research not only elucidates the pivotal role of high-valent iron-oxo species in pollutant degradation within the PAA-AOPs framework but also pioneers a wastewater treatment system characterized by excellent degradation efficiency coupled with low ecological risk, thereby laying the groundwork for applications in wastewater management and beyond.

摘要

基于过氧乙酸(PAA)的高级氧化工艺(AOPs)为解决抗生素废水污染提供了一种很有前景的策略。在本研究中,采用铁掺杂的石墨相氮化碳(g-CN)纳米材料构建铁氮位点,并通过氮化硼量子点(BNQDs)调节其电子结构,从而优化PAA活化以降解抗生素。BNQDs修饰的铁掺杂g-CN催化剂(BNQDs-FCN)实现了0.0843 min出色的反应速率常数,比基于氮化碳(CN)的PAA体系提高了21.6倍。密度泛函理论(DFT)计算进一步证实了铁氮位点对PAA具有优异的吸附能力,有助于其活化。电荷转移机制以PAA作为电子受体,被确定为高价铁氧物种的来源。此外,BNQDs-FCN体系优先靶向抗生素结构中的含氧官能团,阐明了这些高亲电物种的选择性攻击模式。本研究不仅阐明了高价铁氧物种在PAA-AOPs框架内污染物降解中的关键作用,还开创了一种具有优异降解效率和低生态风险的废水处理系统,从而为废水管理及其他领域的应用奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b27e/11709145/8f026cd8df7d/es4c08224_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验