Suppr超能文献

机器学习辅助的供体数量预测:指导用于锂离子电池的聚合物电解质的合理制备

Machine Learning Assisted Prediction of Donor Numbers: Guiding Rational Fabrication of Polymer Electrolytes for Lithium-Ion Batteries.

作者信息

Gao Yuqing, Qi Shengguang, Li Mianrui, Ma Tongmei, Song Huiyu, Cui Zhiming, Liang Zhenxing, Du Li

机构信息

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.

Guangdong Provincial Laboratory of Chemistry and Fine Chemical, Engineering Jieyang Center, Jieyang, 515200, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202411437. doi: 10.1002/anie.202411437. Epub 2024 Dec 5.

Abstract

Polymer electrolytes are of interest in high-energy-density batteries. However, how the intrinsic electron-donating capability of polymer segments involved in coordination affects lithium-ion dissociation/transmission and rationally guides the design and fabrication of electrolytes is a highly exploratory topic. This study proposes a workable method that integrates machine learning with density functional theory to predict donor numbers (DN) for polymer building units. Using this approach, polymer chains with optimized DN are designed, effectively modulating the solvation structure of lithium-ion. Molecular dynamics simulations confirm the positive impact of polymer chains on rapid transport of lithium ions. Experimental validation of the proposed zwitterionic polymer electrolyte (ZPE) showcases satisfactory parameters: ion conductivity (0.59 mS cm), ion migration numbers (0.82), and activation energy (0.016 eV). Electrochemical analysis on Li|ZPE|Li symmetric batteries demonstrate sustained plating/stripping performance exceeding 3000 hours at a current density of 0.2 mA cm. Assembled NCM|ZPE|Li batteries exhibit stable cycling over 1400 cycles at 4.3 V, with a capacity retention ratio of 92.3 %. Moreover, even under ultra-high voltages of 4.5 V and 4.7 V, NCM|ZPE|Li batteries display stable cycling performances. This approach offers a paradigmatic strategy for polymer molecule design, advancing sustainable battery technologies.

摘要

聚合物电解质在高能量密度电池中备受关注。然而,参与配位的聚合物链段的固有给电子能力如何影响锂离子的解离/传输,并合理指导电解质的设计与制备,是一个极具探索性的课题。本研究提出了一种将机器学习与密度泛函理论相结合的可行方法,用于预测聚合物构建单元的给体数(DN)。利用这种方法,设计了具有优化DN的聚合物链,有效调节了锂离子的溶剂化结构。分子动力学模拟证实了聚合物链对锂离子快速传输的积极影响。对所提出的两性离子聚合物电解质(ZPE)的实验验证展示了令人满意的参数:离子电导率(0.59 mS cm)、离子迁移数(0.82)和活化能(0.016 eV)。对Li|ZPE|Li对称电池的电化学分析表明,在0.2 mA cm的电流密度下,持续的电镀/剥离性能超过3000小时。组装的NCM|ZPE|Li电池在4.3 V下经过1400次循环表现出稳定的循环性能,容量保持率为92.3%。此外,即使在4.5 V和4.7 V的超高电压下,NCM|ZPE|Li电池也显示出稳定的循环性能。这种方法为聚合物分子设计提供了一种典范策略,推动了可持续电池技术的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验