Gao Yuqing, Mo Yankui, Qi Shengguang, Li Mianrui, Ma Tongmei, Du Li
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
Molecules. 2025 Jun 5;30(11):2474. doi: 10.3390/molecules30112474.
Polymer electrolytes (PEs) provide enhanced safety for high-energy-density lithium metal batteries (LMBs), yet their practical application is hampered by intrinsically low ionic conductivity and insufficient electrochemical stability, primarily stemming from suboptimal Li solvation environments and transport pathways coupled with slow polymer dynamics. Herein, we demonstrate a molecular design strategy to overcome these limitations by regulating the Li solvation structure through the synergistic interplay of conventional Lewis acid-base coordination and engineered hydrogen bond (H-bond) networks, achieved by incorporating specific H-bond donor functionalities (N,N'-methylenebis(acrylamide), MBA) into the polymer architecture. Computational modeling confirms that the introduced H-bonds effectively modulate the Li coordination environment, promote salt dissociation, and create favorable pathways for faster ion transport decoupled from polymer chain motion. Experimentally, the resultant polymer electrolyte (MFE, based on MBA) enables exceptionally stable Li metal cycling in symmetric cells (>4000 h at 0.1 mA cm), endows LFP|MFE|Li cells with long-term stability, achieving 81.0% capacity retention after 1400 cycles, and confers NCM622|MFE|Li cells with cycling endurance, maintaining 81.0% capacity retention after 800 cycles under a high voltage of 4.3 V at room temperature. This study underscores a potent molecular engineering strategy, leveraging synergistic hydrogen bonding and Lewis acid-base interactions to rationally tailor the Li solvation structure and unlock efficient ion transport in polymer electrolytes, paving a promising path towards high-performance solid-state lithium metal batteries.
聚合物电解质(PEs)为高能量密度锂金属电池(LMBs)提供了更高的安全性,然而其实际应用受到固有低离子电导率和电化学稳定性不足的阻碍,这主要源于不理想的锂溶剂化环境和传输路径,以及聚合物动力学缓慢。在此,我们展示了一种分子设计策略,通过传统路易斯酸碱配位和工程化氢键(H键)网络的协同相互作用来调节锂溶剂化结构,从而克服这些限制,这是通过将特定的H键供体功能基团(N,N'-亚甲基双丙烯酰胺,MBA)引入聚合物结构中来实现的。计算模型证实,引入的H键有效地调节了锂配位环境,促进了盐的解离,并为与聚合物链运动解耦的更快离子传输创造了有利路径。实验表明,所得的聚合物电解质(基于MBA的MFE)在对称电池中实现了异常稳定的锂金属循环(在0.1 mA cm下>4000小时),赋予LFP|MFE|Li电池长期稳定性,在1400次循环后容量保持率达到81.0%,并赋予NCM622|MFE|Li电池循环耐久性,在室温下4.3 V的高电压下800次循环后容量保持率维持在81.0%。这项研究强调了一种有效的分子工程策略,利用协同氢键和路易斯酸碱相互作用来合理定制锂溶剂化结构,并在聚合物电解质中实现高效离子传输,为高性能固态锂金属电池开辟了一条充满希望的道路。