文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用木质素纳米颗粒实现可持续的酶固定化:当前模式与未来创新

Harnessing Lignin Nanoparticles for Sustainable Enzyme Immobilization: Current Paradigms and Future Innovations.

作者信息

Gorish Babbiker Mohammed Taher, Abdelmula Waha Ismail Yahia, Sethupathy Sivasamy, Robele Ashenafi Berhanu, Zhu Daochen

机构信息

International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.

Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.

出版信息

Appl Biochem Biotechnol. 2025 Mar;197(3):1393-1418. doi: 10.1007/s12010-024-05133-9. Epub 2024 Nov 28.


DOI:10.1007/s12010-024-05133-9
PMID:39607467
Abstract

Lignin, a vital plant component, is key in providing structural integrity and is the second most abundant biopolymer in nature. The growing interest in sustainable and efficient biocatalysis has driven the exploration of lignin nanoparticles (LNPs) as a promising platform for enzyme immobilization. Given lignin's abundance and structural role in plants, converting it into nanoparticles offers a potential eco-friendly alternative to traditional supports. This comprehensive review explores recent advancements in using LNPs for enzyme immobilization, focusing on loading techniques, immobilization efficiency, enzyme activity levels, and various factors that affect the performance of enzymes immobilized on LNPs. The review also addresses the primary challenges associated with enzyme immobilization on LNPs and discusses future innovations in this field. Adopting eco-friendly immobilization platforms based on LNPs is expected to have broad applications in industries like food, pharmaceuticals, animal feed, and detergents. However, there is still potential to customize LNPs further and develop novel immobilization techniques to leverage their benefits fully. By understanding the properties and advantages of these nanostructured lignin supports, researchers can design and create innovative nanocatalysts for various industrial applications.

摘要

木质素是植物的重要组成部分,对于提供结构完整性至关重要,并且是自然界中第二丰富的生物聚合物。对可持续和高效生物催化的兴趣日益浓厚,推动了对木质素纳米颗粒(LNPs)作为酶固定化有前景平台的探索。鉴于木质素在植物中的丰富性及其结构作用,将其转化为纳米颗粒为传统载体提供了一种潜在的环保替代方案。这篇综述探讨了利用LNPs进行酶固定化的最新进展,重点关注负载技术、固定化效率、酶活性水平以及影响固定在LNPs上的酶性能的各种因素。该综述还阐述了与在LNPs上固定酶相关的主要挑战,并讨论了该领域未来的创新。采用基于LNPs的环保固定化平台有望在食品、制药、动物饲料和洗涤剂等行业得到广泛应用。然而,进一步定制LNPs并开发新型固定化技术以充分利用其优势仍有潜力。通过了解这些纳米结构木质素载体的特性和优势,研究人员可以设计和创建用于各种工业应用的创新型纳米催化剂。

相似文献

[1]
Harnessing Lignin Nanoparticles for Sustainable Enzyme Immobilization: Current Paradigms and Future Innovations.

Appl Biochem Biotechnol. 2025-3

[2]
Lignin: The green powerhouse for enzyme immobilization in biocatalysis and biosensing.

Int J Biol Macromol. 2024-11

[3]
Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-A review.

Int J Biol Macromol. 2021-1-1

[4]
Phospholipase D Immobilization on Lignin Nanoparticles for Enzymatic Transformation of Phospholipids.

ChemSusChem. 2024-2-8

[5]
Enzyme immobilization with nanomaterials for hydrolysis of lignocellulosic biomass: Challenges and future Perspectives.

Carbohydr Res. 2024-9

[6]
Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis - A review.

Int J Biol Macromol. 2021-1-15

[7]
Cutting-edge innovations in lignin-based nanoparticles: A review of synthesis techniques, characterization, and diverse applications.

Int J Biol Macromol. 2025-5

[8]
A Comprehensive Guide to Enzyme Immobilization: All You Need to Know.

Molecules. 2025-2-18

[9]
Technological advancement in the synthesis and applications of lignin-based nanoparticles derived from agro-industrial waste residues: A review.

Int J Biol Macromol. 2020-11-15

[10]
Unlocking the potential: Evolving role of technical lignin in diverse applications and overcoming challenges.

Int J Biol Macromol. 2024-8

引用本文的文献

[1]
Nanoengineered Enzyme Immobilization: Toward Biomedical, Orthopedic, and Biofuel Applications.

ACS Omega. 2025-8-5

本文引用的文献

[1]
Overcoming Challenges of Lignin Nanoparticles: Expanding Opportunities for Scalable and Multifunctional Nanomaterials.

Acc Chem Res. 2024-7-16

[2]
A Lignin Silver Nanoparticles/Polyvinyl Alcohol/Sodium Alginate Hybrid Hydrogel with Potent Mechanical Properties and Antibacterial Activity.

Gels. 2024-4-1

[3]
Support Materials of Organic and Inorganic Origin as Platforms for Horseradish Peroxidase Immobilization: Comparison Study for High Stability and Activity Recovery.

Molecules. 2024-2-3

[4]
Fabrication of lignin-based sub-micro hybrid particle as a novel support for adenylate cyclase immobilization.

Colloids Surf B Biointerfaces. 2024-1

[5]
Phospholipase D Immobilization on Lignin Nanoparticles for Enzymatic Transformation of Phospholipids.

ChemSusChem. 2024-2-8

[6]
Preparation of water-insoluble lignin nanoparticles by deep eutectic solvent and its application as a versatile and biocompatible support for the immobilization of α-amylase.

Int J Biol Macromol. 2023-9-30

[7]
Recent updates on green synthesis of lignin nanoparticle and its potential applications in modern biotechnology.

Crit Rev Biotechnol. 2024-8

[8]
Enzyme Immobilization Technologies and Industrial Applications.

ACS Omega. 2023-1-31

[9]
Stabilized Lignin Nanoparticles for Versatile Hybrid and Functional Nanomaterials.

Biomacromolecules. 2022-11-14

[10]
Research Progress on the Preparation and High-Value Utilization of Lignin Nanoparticles.

Int J Mol Sci. 2022-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索