Division of Cerebral Integration, National Institute for Physiological Sciences, 38 Nishigonaka, Aichi, 444-8585, Okazaki, Japan.
Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa, 240-0193, Hayama, Japan.
Exp Brain Res. 2024 Nov 28;243(1):4. doi: 10.1007/s00221-024-06944-2.
We conducted an fMRI study to investigate the neural basis of bimanual coordination, which is fundamental to upper extremity control. Considering bimanual movement as a combination of bimanual chord formation and sequence control, we hypothesized that the areas with the learning effect of both chord formation and sequence learning are critical in bimanual coordination. We adopted the serial reaction time task (SRTT) to test this hypothesis. Thirty-five healthy right-handed volunteers practiced visually cued bimanual SRTT, including the "mirror" and more complex "parallel" modes of random movements or repeating fixed sequences to separately depict the neural substrates of bimanual posture control for chord formation and those of sequence. Random movements' reaction time (RT) continuously declined, indicating learning of bimanual chord formation. The RT in the sequential condition declined more rapidly than in the random condition, confirming sequence learning. The parallel random conditions evoked a more prominent learning-related decrease of task-related activation in the left M1 and cerebellar vermis than the less difficult mirror random conditions. The left M1 showed learning-related enhancement of functional connectivity with the anterior cingulate cortex during the parallel random conditions compared with the mirror random conditions. Thus, the left M1, anterior cingulate cortex, and cerebellar vermis are related to learning bimanual chord formation. The left M1 and cerebellar vermis also showed sequence-specific learning-related activity increments more prominent in the parallel mode than in the mirror mode. Thus, the left M1 and cerebellar vermis are critical in the bimanual motor learning network.
我们进行了一项 fMRI 研究,旨在探讨双手协调的神经基础,这是上肢控制的基础。考虑到双手运动是由双手和弦形成和序列控制组合而成的,我们假设具有和弦形成和序列学习学习效果的区域在手的协调中是至关重要的。我们采用了序列反应时任务(SRTT)来检验这一假设。35 名健康的右利手志愿者进行了视觉提示的双手 SRTT 练习,包括随机运动的“镜像”和更复杂的“平行”模式,或重复固定序列,以分别描绘用于和弦形成的双手姿势控制的神经基础和用于序列的神经基础。随机运动的反应时间(RT)连续下降,表明了双手和弦形成的学习。在序列条件下的 RT 比在随机条件下下降得更快,证实了序列学习。平行随机条件比镜像随机条件更显著地引起与任务相关的左 M1 和小脑蚓部激活的与学习相关的降低。与镜像随机条件相比,在平行随机条件下,左 M1 与前扣带皮层之间的功能连接显示出与学习相关的增强。因此,左 M1、前扣带皮层和小脑蚓部与学习双手和弦形成有关。左 M1 和小脑蚓部在平行模式下也表现出比镜像模式下更显著的与序列特异性学习相关的活动增加。因此,左 M1 和小脑蚓部在手的运动学习网络中至关重要。