Dresch Jacqueline M, Nourie Luke L, Conrad Regan D, Carlson Lindsay T, Tchantouridze Elizabeth I, Tesfaye Biruck, Verhagen Eleanor, Gupta Mahima, Borges-Rivera Diego, Drewell Robert A
Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA.
Genetics. 2025 Jan 8;229(1):1-43. doi: 10.1093/genetics/iyae176.
The Drosophila PAX6 homolog twin of eyeless (toy) sits at the pinnacle of the genetic pathway controlling eye development, the retinal determination network. Expression of toy in the embryo is first detectable at cellular blastoderm stage 5 in an anterior-dorsal band in the presumptive procephalic neuroectoderm, which gives rise to the primordia of the visual system and brain. Although several maternal and gap transcription factors that generate positional information in the embryo have been implicated in controlling toy, the regulation of toy expression in the early embryo is currently not well characterized. In this study, we adopt an integrated experimental approach utilizing bioinformatics, molecular genetic testing of putative enhancers in transgenic reporter gene assays and quantitative analysis of expression patterns in the early embryo, to identify 2 novel coacting enhancers at the toy gene. In addition, we apply mathematical modeling to dissect the regulatory landscape for toy. We demonstrate that relatively simple thermodynamic-based models, incorporating only 5 TF binding sites, can accurately predict gene expression from the 2 coacting enhancers and that the HUNCHBACK TF plays a critical regulatory role through a dual-modality function as an activator and repressor. Our analysis also reveals that the molecular architecture of the 2 enhancers is very different, indicating that the underlying regulatory logic they employ is distinct.
果蝇无眼同源基因眼缺失双胞胎(toy)处于控制眼睛发育的遗传途径——视网膜决定网络的顶端。toy在胚胎中的表达最初在细胞胚盘阶段5的前背带中可检测到,该前背带位于假定的前脑神经外胚层中,会发育成视觉系统和大脑的原基。尽管一些在胚胎中产生位置信息的母体和间隙转录因子与控制toy有关,但目前早期胚胎中toy表达的调控尚未得到很好的表征。在本研究中,我们采用了一种综合实验方法,利用生物信息学、转基因报告基因分析中对假定增强子的分子遗传学检测以及早期胚胎中表达模式的定量分析,来鉴定toy基因处的2个新的协同作用增强子。此外,我们应用数学建模来剖析toy的调控格局。我们证明,仅包含5个转录因子结合位点的相对简单的基于热力学的模型,可以准确预测来自这2个协同作用增强子的基因表达,并且驼背转录因子通过作为激活剂和抑制剂的双重模式功能发挥关键的调控作用。我们的分析还表明,这2个增强子的分子结构非常不同,表明它们所采用的潜在调控逻辑是不同的。