Chan Zuckerberg Biohub, San Francisco, United States.
Department of Chemical Biology, University of California, Berkeley, Berkeley, United States.
Elife. 2022 Dec 12;11:e73395. doi: 10.7554/eLife.73395.
A challenge in quantitative biology is to predict output patterns of gene expression from knowledge of input transcription factor patterns and from the arrangement of binding sites for these transcription factors on regulatory DNA. We tested whether widespread thermodynamic models could be used to infer parameters describing simple regulatory architectures that inform parameter-free predictions of more complex enhancers in the context of transcriptional repression by Runt in the early fruit fly embryo. By modulating the number and placement of Runt binding sites within an enhancer, and quantifying the resulting transcriptional activity using live imaging, we discovered that thermodynamic models call for higher-order cooperativity between multiple molecular players. This higher-order cooperativity captures the combinatorial complexity underlying eukaryotic transcriptional regulation and cannot be determined from simpler regulatory architectures, highlighting the challenges in reaching a predictive understanding of transcriptional regulation in eukaryotes and calling for approaches that quantitatively dissect their molecular nature.
定量生物学面临的一个挑战是,根据输入转录因子模式和这些转录因子在调控 DNA 上的结合位点的排列,预测基因表达的输出模式。我们测试了广泛的热力学模型是否可以用于推断描述简单调控结构的参数,这些参数可用于在转录因子 Runt 在早期果蝇胚胎中起转录抑制作用的情况下,对更复杂增强子进行无参数预测。通过在增强子内调节 Runt 结合位点的数量和位置,并使用实时成像量化由此产生的转录活性,我们发现热力学模型需要多个分子元件之间的高阶协同作用。这种高阶协同作用捕获了真核转录调控的组合复杂性,不能从更简单的调控结构中确定,突出了在真核生物转录调控方面达到预测性理解所面临的挑战,并呼吁采用定量方法剖析其分子性质。