Murray Brian Patrick, Thota Darshan S, Baker Carrie, Stierwalt Joshua B
Wright State University Boonshoft School of Medicine, Dayton, OH 45324, USA.
Joint Trauma System, San Antonio, TX 78234, USA.
Mil Med. 2025 Jun 30;190(7-8):e1381-e1385. doi: 10.1093/milmed/usae536.
The rapid advancement and adoption of large language models (LLMs) in various academic domains necessitate an examination of their role in scholarly works by medical learners.This paper seeks to discern the implications of LLM use by medical learners when preparing works for publication. While LLMs possess great potential to revolutionize the academic writing process, they can detract from the learning process when used by students and residents who are still learning how to research, formulate ideas, and write cohesive arguments.
An environmental scan of both traditional evidence-based sources and gray literature was performed to glean best practices of generative AI in medical education. Sources included peer-reviewed journals, open-source websites, and previous publications in this field ranging from 2015 to 2023.
We propose several strategies to detect AI involvement: direct inquiry to the learner, assessing the coherence level of the content in contrast to the learner's known capabilities, recognizing patterns of shallow insight or depth, utilizing plagiarism and AI-specific detection tools, and monitoring for fabricated citations-a known pitfall of LLMs.
Although LLMs offer potential efficiencies in academic writing, unchecked use can jeopardize the development of essential critical thinking and analytical skills in medical learners. Ultimately, mentors and primary investigators are responsible for ensuring learners are advancing and appropriately utilizing new and emerging technology. This study provides a foundational framework for educators in both responsible use of generative AI and best practices.
大语言模型(LLMs)在各个学术领域的迅速发展和应用,使得有必要审视其在医学学习者学术作品中的作用。本文旨在探讨医学学习者在准备发表作品时使用大语言模型的影响。虽然大语言模型在革新学术写作过程方面具有巨大潜力,但对于仍在学习如何进行研究、构思观点以及撰写连贯论证的学生和住院医师而言,使用这些模型可能会干扰学习进程。
对传统的循证资源和灰色文献进行了环境扫描,以收集生成式人工智能在医学教育中的最佳实践。来源包括同行评审期刊、开源网站以及该领域2015年至2023年的以往出版物。
我们提出了几种检测人工智能参与情况的策略:直接询问学习者、根据学习者已知能力评估内容的连贯程度、识别肤浅见解或深度的模式、利用抄袭检测工具和特定于人工智能的检测工具,以及监测虚假引用——这是大语言模型的一个已知陷阱。
尽管大语言模型在学术写作中具有提高效率的潜力,但不加控制地使用可能会损害医学学习者关键批判性思维和分析技能的发展。最终,导师和主要研究者有责任确保学习者正确使用新兴技术并不断进步。本研究为教育工作者在负责任地使用生成式人工智能及最佳实践方面提供了一个基础框架。