Suppr超能文献

脊髓 V1 抑制性中间神经元祖细胞在出生日期、向运动神经元的投射和异质性方面存在差异。

Spinal V1 inhibitory interneuron clades differ in birthdate, projections to motoneurons, and heterogeneity.

机构信息

Department of Physiology, Emory University School of Medicine, Atlanta, United States.

Department of Cell Biology, Emory University School of Medicine, Atlanta, United States.

出版信息

Elife. 2024 Nov 28;13:RP95172. doi: 10.7554/eLife.95172.

Abstract

Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets in the mouse according to neurogenesis, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Sequential neurogenesis delineates different V1 subsets: two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8). Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies, and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression, is positioned near the LMC and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins.

摘要

脊髓中间神经元在塑造运动输出方面发挥着关键作用,但它们的确切身份和连接仍不清楚。我们专注于 V1 中间神经元主类群,根据神经发生、遗传谱系追踪、向运动神经元的突触输出以及来自肌肉传入的突触输入,在小鼠中定义了四个主要的 V1 子集。连续的神经发生描绘了不同的 V1 子集:两个早生的(Renshaw 和 Pou6f2)和两个晚生的(Foxp2 和 Sp8)。早生的 Renshaw 细胞和晚生的 Foxp2-V1 中间神经元与运动神经元紧密耦合,而早生的 Pou6f2-V1 和晚生的 Sp8-V1 中间神经元则不是,这表明神经发生的时间与运动神经元的靶向无关。V1 分支也在细胞数量和多样性上存在差异。谱系标记显示,Foxp2-V1 分支包含超过一半的所有 V1 中间神经元,提供最大的抑制性输入到运动神经元胞体,并包含在出生日期、位置和本体感受输入方面存在差异的亚群。值得注意的是,一个 Foxp2-V1 亚群,由出生后 Otp 表达定义,位于 LMC 附近,并接收来自本体感受器的大量输入,这与参与交互抑制途径一致。踝关节屈肌感觉传入和与踝关节伸肌单突触连接的中间神经元的联合追踪证实了 Foxp2-V1 中间神经元在交互抑制途径中的位置。我们的结果验证了先前提出的 V1 分支作为独特的功能亚型,它们在电路位置上存在差异,其中 Foxp2-V1 细胞形成最具异质性的亚群。我们讨论了 V1 组织多样性如何使我们能够理解它们在运动控制中的作用,这对它们在不同的发生和进化起源中具有不同的作用具有启示意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验