Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA.
J Comp Neurol. 2010 Dec 1;518(23):4675-701. doi: 10.1002/cne.22441.
The diversity of premotor interneurons in the mammalian spinal cord is generated from a few phylogenetically conserved embryonic classes of interneurons (V0, V1, V2, V3). Their mechanisms of diversification remain unresolved, although these are clearly important to understand motor circuit assembly in the spinal cord. Some Ia inhibitory interneurons (IaINs) and all Renshaw cells (RCs) derive from embryonic V1 interneurons; however, in adult they display distinct functional properties and synaptic inputs, for example proprioceptive inputs preferentially target IaINs, while motor axons target RCs. Previously, we found that both inputs converge on RCs in neonates, raising the possibility that proprioceptive (VGLUT1-positive) and motor axon synapses (VAChT-positive) initially target several different V1 interneurons populations and then become selected or deselected postnatally. Alternatively, specific inputs might precisely connect only with predefined groups of V1 interneurons. To test these hypotheses we analyzed synaptic development on V1-derived IaINs and compared them to RCs of the same age and spinal cord levels. V1-interneurons were labeled using genetically encoded lineage markers in mice. The results show that although neonatal V1-derived IaINs and RCs are competent to receive proprioceptive synapses, these synapses preferentially target the proximal somato-dendritic regions of IaINs and postnatally proliferate on IaINs, but not on RCs. In contrast, cholinergic synapses on RCs are specifically derived from motor axons, while on IaINs they originate from Pitx2 V0c interneurons. Thus, motor, proprioceptive, and even some interneuron inputs are biased toward specific subtypes of V1-interneurons. Postnatal strengthening of these inputs is later superimposed on this initial preferential targeting.
哺乳动物脊髓前运动神经元的多样性是由少数进化上保守的胚胎类中间神经元(V0、V1、V2、V3)产生的。尽管这些对于理解脊髓运动回路的组装显然很重要,但它们的多样化机制仍未解决。一些 Ia 抑制性中间神经元(IaINs)和所有 Renshaw 细胞(RCs)都来自胚胎 V1 中间神经元;然而,在成年后,它们表现出不同的功能特性和突触输入,例如本体感受输入优先靶向 IaINs,而运动轴突则靶向 RCs。之前,我们发现这两种输入都在新生儿的 RCs 中汇聚,这表明本体感受(VGLUT1 阳性)和运动轴突突触(VAChT 阳性)最初可能靶向几个不同的 V1 中间神经元群体,然后在出生后被选择或不被选择。或者,特定的输入可能只与特定的 V1 中间神经元群体精确连接。为了验证这些假设,我们分析了 V1 衍生的 IaINs 上的突触发育,并将其与同年龄和脊髓水平的 RCs 进行了比较。使用基因编码的谱系标记物在小鼠中标记 V1 中间神经元。结果表明,尽管新生的 V1 衍生的 IaINs 和 RCs 有能力接收本体感受突触,但这些突触优先靶向 IaINs 的近端体树突区,并在出生后在 IaINs 上增殖,但不在 RCs 上。相比之下,RCs 上的胆碱能突触特异性来自运动轴突,而在 IaINs 上,它们起源于 Pitx2 V0c 中间神经元。因此,运动、本体感受甚至一些中间神经元输入都偏向于特定类型的 V1 中间神经元。这些输入的出生后强化随后叠加在这种最初的优先靶向上。